Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Generalized Vertigo Maps — A New Family of Chaotic Maps with Robust Chaos but Without Fixed Points

    This work proposes a generalization of the family of chaotic maps without fixed points, proposed by Jafari et al.; 2016 and termed the Vertigo maps. The original map family is parameterized by four control parameters, which can be used to scale the function used as a seed and control its domain. Several theoretical results are provided regarding the existence of the fixed points, the periodic cycles, and the Lyapunov exponents of the maps. Furthermore, two map examples are provided based on the logistic and tent seed functions, which are then studied using a series of numerical tools, like phase portraits, bifurcation diagrams, and Lyapunov exponent diagrams. Finally, an application to a Pseudo-Random Bit Generator is considered. The generator utilizes an exponential-based hash function in combination with the remainder operator.

  • articleNo Access

    ANALYSIS OF A MULTIPLE-OUTPUT PSEUDO-RANDOM-BIT GENERATOR BASED ON A SPATIOTEMPORAL CHAOTIC SYSTEM

    A novel multiple-output pseudo-random-bit generator (PRBG) based on a coupled map lattice (CML) consisting of skew tent maps, which generates spatiotemporal chaos, is presented. In order to guarantee PRBG highly effective, avoiding synchronization among the sites in the CML is discussed. The cryptographic properties, such as probability distribution, auto-correlation and cross-correlation, of the PRBG with various parameters, are investigated numerically. The randomness of the PRBG is verified via FIPS 140-2. In addition, as compared with the PRBG based on the CML consisting of the logistic maps, which are often used in chaos-based PRBGs by many other researchers, the ranges of the parameters within which this multiple-output PRBG have good cryptographic properties are much bigger in terms of their cryptographic properties. It lays a foundation for designing a faster and more secure encryption.

  • articleNo Access

    Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps

    A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.