Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The theory of cometary panspermia is reviewed in relation to evidence from astronomy, biology and recent studies of meteorites. The spectroscopic signatures in interstellar material within our galaxy and in external galaxies that have been known for many years most plausibly represent evidence for the detritus of life existing on a cosmic scale. Such spectral features discovered in galaxies of high redshift points to life arising at a very early stage in the history of the Universe. Evidence of fossils of microscopic life forms in meteorites that have been discussed over several decades, and augmented recently with new data, reaffirms the case for cometary panspermia.
For the month of October 2021, APBN explores astrobiology and the planetary sciences. In Features, we look into the age-old question: are we alone in the Universe? If not, how might life emerge elsewhere in the Cosmos and taking what we know now, where do we go from here? Then we have a special contribution by Professor Chandra Wickramasinghe, astronomer and pioneer of astrobiology, who discusses the Panspermia theory and the role of culture in delaying the acceptance of the theory. In Columns, we review the latest human gene therapy trials using adeno-associated viruses as vectors to treat neurodegenerative disorders. Finally, in Spotlights, we share highlights from a conference by SGInnovate and CATALYST potential of bioprinting in personalised medicine and an interview with Dr. Senthil Sockalingam, Head of IQVIA Biotech, JAPAC & Chief Medical Officer, APAC, on its expansion in the Asia-Pacific and how the company's new innovative approach will utilise data and analytics to accelerate clinical development.
The importance of distinguishing between hypotheses that are verified by a vast number of predictions and have not been falsified, and conjectures without any compelling evidence is of paramount importance for science educators to keep in mind. This article describes the trajectory of one such hypothesis. The concept of cometary panspermia has been developed over a period of four decades and evidence for it has straddled many scientific disciplines from astronomy, to geology, biology and epidemiology. With an ever-increasing number of predictions of this theory being verified, the question as to why it has not entered mainstream thinking is an intriguing one. I suggest that this resistance is connected with sociological considerations, including a deep cultural hostility to theories that appear to have a foreign or “alien” provenance.
A major paradigm shift with potentially profound implications has been taking place over the past 3 decades at a rapidly accelerating pace. The Copernican revolution of half a millennium ago is now being extended to place humanity on the Earth in its correct cosmic perspective — an assembly of cosmically derived viral genes, no more, no less, pieced together over 4 billion years of geological history against the processes of Darwinian natural selection. The evidence for our cosmic ancestry has now grown to the point that to deny it is a process fraught with imminent danger. We discuss the weight of modern scientific evidence from diverse sources, the history of development of the relevant ideas, and the socio-economic and historical forces that are responsible for dictating the pace of change.
We discuss the origin and evolution of Homo sapiens in a cosmic context, and in relation to the Hoyle–Wickramasinghe theory of panspermia for which there is now overwhelming evidence. It is argued that the first bacteria (archea) incident on the Earth via the agency of comets 3.8–4 billion years ago continued at later times to be augmented by viral genes (DNA, RNA) from space that eventually led to the evolutionary patterns we see in present-day biology. We argue that the current evolutionary status of Homo sapiens as well as its future trajectory is circumscribed by evolutionary processes that were pre-determined on a cosmic scale — over vast distances and enormous spans of cosmic time. Based on this teleological hypothesis we postulate that two distinct classes of cosmic viruses (cosmic viral genes) are involved in accounting for the facts relating to the evolution of life.
The theory of cometary panspermia is reviewed in relation to evidence from astronomy, biology, and recent studies of meteorites. The spectroscopic signatures in interstellar material within our galaxy and in external galaxies that have been known for many years most plausibly represent evidence for the detritus of life existing on a cosmic scale. Such spectral features discovered in galaxies of high redshift points to life arising at a very early stage in the history of the Universe. Evidence of fossils of microscopic life forms in meteorites that have been discussed over several decades, and augmented recently with new data, reaffirms the case for cometary panspermia.
With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems most likely that interstellar organics in large measure also derive from biology. As we enter a new decade — the year 2010 — a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.
Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance — a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.
With the many major advances in medical and biological sciences that have taken place in recent years it would seem remarkable that we are still unable to come to grips with the problem of influenza. In spite of our ability to produce detail sequences of bacterial and viral genomes, the emergence of new epidemic or pandemic strains of the influenza virus is still shrouded in mystery. To resolve this mystery we may need to turn to space.
The discovery of cross-linked hetero-aromatic polymers in interstellar dust by instruments aboard the Stardust spacecraft would confirm the validity of the biological grain model that was suggested from spectroscopic studies over 20 years ago. Such structures could represent fragments of cell walls that survive 30 km/s impacts onto detector surfaces.
Panspermia theories require the transport of micro-organisms in a viable form from one astronomical location to another. The evidence of material ejection from planetary surfaces, of dynamical orbit evolution and of potential survival on landing is setting a firm basis for interplanetary panspermia. Pathways for interstellar panspermia are less clear. We compare the direct route, whereby life-bearing planetary ejecta exit the solar system and risk radiation hazards en route to nearby stellar systems, and an indirect route whereby ejecta hitch a ride within the shielded environment of comets of the Edgeworth- Kuiper Belt that are subsequently expelled from the solar system. We identify solutions to the delivery problem. Delivery to fully-fledged planetary systems of either the direct ejecta or the ejecta borne by comets depends on dynamical capture and is of very low efficiency. However, delivery into a proto-planetary disc of an early solar-type nebula and into pre-stellar molecular clouds is effective, because the solid grains efficiently sputter the incoming material in hypervelocity collisions. The total mass of terrestrial fertile material delivered to nearby pre-stellar systems as the solar system moves through the galaxy is from kilogrammes up to a tonne. Subject to further study of bio-viability under irradiation and fragmenting collisions, a few kg of original grains and sputtered fragments could be sufficient to seed the planetary system with a wide range of solar system micro-organisms.
This essay traces the progress towards establishing panspermia as a new paradigm from the time of its last revival in the late 1970's to the year 2002. Many lines of evidence are seen to converge on the hypothesis that life is a cosmic phenomenon.
Radiation pressure cross-sections for clumps of hollow bacterial grains with thin coatings of graphite are calculated using rigorous Guttler formulae. The carbonized skins are expected to form through exposure to solar ultraviolet radiation, but a limiting thickness of about 0.03 μm is determined by opacity effects. The ratios of radiation pressure to gravity P/G are calculated for varying sizes of the clumps and for varying thickness of the graphite coatings. Bacterial clumps and individual desiccated bacteria without coatings of radii in the range 0.3–8 μm have P/G ratios less than unity, whereas particles with coatings of 0.02 μm thickness have ratios in excess of unity. Such coatings also provide protection from damaging ultraviolet radiation. Putative cometary bacteria, such as have been recently collected in the stratosphere, are thus not gravitationally bound in the solar system provided they possess carbonised exterior coatings. They are rapidly expelled from the solar system reaching nearby protosolar nebulae in timescales of a few million years. Even with the most pessimistic assumptions galactic cosmic rays are unable to diminish viability to an extent that vitiates the continuity of panspermia.
It is nearly 30 years since the first decisive evidence of microbial morphologies in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug. In addition to morphology other data, notably laser mass spectroscopy, served to confirm the identification of such structures as putative bacterial fossils. Recent examinations of cometary dust collected in the stratosphere and further studies of carbonaceous meteorites reaffirm the presence of putative microbial fossils. Since carbonaceous chondrites (particularly Type 1 chondrites) are thought to be extinct comets the data reviewed in this article provide strong support for theories of cometary panspermia.
The data on the far-ultraviolet extinction of starlight in our galaxy and in external galaxies is interpreted in terms of the widespread occurrence of organic particles of optical refractive index 1.4 and radii less than or equal to 20 nm. Such particles are candidates for nanobacteria such as recently been found in abundance on the Earth.
Liquid water in comets, once considered impossible, now appears to be almost certain. New evidence has come from the discovery of clay minerals in comet Tempel 1, which complements the indirect evidence in aqueous alteration of carbonaceous chondrites. Infrared spectral indication of clay is confirmed by modelling data in the 8–40 μm and 8–12 μm wavebands on the basis of mixtures of clays and organics. Radiogenic heating producing liquid water cores in freshly formed comets appears more likely on current evidence for solar system formation. A second possibility investigated here is transient melting in comets in the inner solar system, where thin crusts of asphalt-like material, formed due to solar processing and becoming hot in the daytime, can cause melting of sub-surface icy material a few centimetres deep. Supposing comets were seeded with microbes at the time of their formation from pre-solar material, there would be plenty of time for exponential amplification and evolution within the liquid interior and in the transient ponds or lakes formed as the outer layers are stripped away via sublimation.
Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10−21) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual recycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970's, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.
The possibility of the clouds of Venus providing habitats for extremophilic microorganisms has been discussed for several decades. We show here that the action of the solar wind leads to erosion of parts of the atmosphere laden with aerosols and putative microorganisms, forming a comet-like tail in the antisolar direction. During inferior conjunctions that coincide with transits of the planet Venus this comet-like tail intersects the Earth's magnetopause and injects aerosol particles. Data from ESA's Venus Express spacecraft and from SOHO are used to discuss the ingress of bacteria from Venus into the Earth's atmosphere, which we estimate as ~1011–1013 cells for each transit event.
Mechanisms of interstellar panspermia have recently been identified whereby life, wherever it has originated, will disperse throughout the habitable zone of the Galaxy within a few billion years. This re-opens the question of where life originated. The interiors of comets, during their aqueous phase, seem to provide environments no less favourable for the origin of life than that of the early Earth. Their combined mass throughout the Galaxy overwhelms that of suitable terrestrial environments by about 20 powers of ten, while the lifetimes of friendly prebiotic environments within them exceeds that of localised terrestrial regions by another four or five powers of ten. We propose that the totality of comets around G-dwarf Sun-like stars offers an incomparably more probable setting for the origin of life than any that was available on the early Earth.
Theories of panspermia are rapidly coming into vogue, with the possibility of the transfer of viable bacterial cells from one planetary abode to another being generally accepted as inevitable. The panspermia models of Hoyle and Wickramasinghe require the transfer of viable bacterial cells from interstellar dust to comets and back into interplanetary and interstellar space. In such a cycle a viable fraction of as little as 10−18 at the inception of a newly formed comet/planet system suffices for cometary panspermia to dominate over competing processes for the origin and transfer of life. The well-attested survival attributes of microbes under extreme conditions, which have recently been discovered, gives credence to the panspermia hypothesis. The prediction of the theory that comets bring microbes onto the Earth at the present time is testable if aseptic collections of stratospheric air above the tropopause can be obtained. We describe a recent collection of this kind and report microbiological analysis that shows the existence of viable cells at 41km, falling to Earth at the rate of a few tonnes per day over the entire globe. Some of these cells have been cultured in the laboratory and found to include microorganisms that are not too different from related species on the Earth. This is in fact what the Hoyle-Wickramasinghe theory predicts. The weight of evidence goes against the more conservative explanation that organisms are being lofted to the high atmosphere from the ground.