Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper we extend the result on base point freeness of the powers of the determinant bundle on the moduli space of vector bundles on a curve. We describe the parabolic analogues of parabolic theta functions, then we determine a uniform bound depending only on the rank of the parabolic bundles. In order to get this bound, we construct a parabolic analogue of Grothendieck's scheme of quotients, which parametrizes quotient bundles of a parabolic bundle, of fixed parabolic Hilbert polynomial. We prove an estimate for its dimension, which extends the result of Popa and Roth on the dimension of the Quot scheme. As an application of the theorem on base point freeness, we characterize parabolic semistability on the algebraic stack of quasi-parabolic bundles as the base locus of the linear system of the parabolic determinant bundle.
We study a certain moduli space of irreducible Hermitian-Yang-Mills connections on a unitary vector bundle over a punctured Riemann surface. The connections used have non-trivial holonomy around the punctures lying in fixed conjugacy classes of U (n) and differ from each other by elements of a weighted Sobolev space; these connections give rise to parabolic bundles in the sense of Mehta and Seshadri. We show in fact that the moduli space of stable parabolic bundles can be identified with our moduli space of HYM connections, by proving that every stable bundle admits a unique unitary gauge orbit of Hermitian-Yang-Mills connections.