Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    THETA FUNCTIONS ON THE MODULI SPACE OF PARABOLIC BUNDLES

    In this paper we extend the result on base point freeness of the powers of the determinant bundle on the moduli space of vector bundles on a curve. We describe the parabolic analogues of parabolic theta functions, then we determine a uniform bound depending only on the rank of the parabolic bundles. In order to get this bound, we construct a parabolic analogue of Grothendieck's scheme of quotients, which parametrizes quotient bundles of a parabolic bundle, of fixed parabolic Hilbert polynomial. We prove an estimate for its dimension, which extends the result of Popa and Roth on the dimension of the Quot scheme. As an application of the theorem on base point freeness, we characterize parabolic semistability on the algebraic stack of quasi-parabolic bundles as the base locus of the linear system of the parabolic determinant bundle.

  • articleNo Access

    PARABOLIC VECTOR BUNDLES AND HERMITIAN-YANG-MILLS CONNECTIONS OVER A RIEMANN SURFACE

    We study a certain moduli space of irreducible Hermitian-Yang-Mills connections on a unitary vector bundle over a punctured Riemann surface. The connections used have non-trivial holonomy around the punctures lying in fixed conjugacy classes of U (n) and differ from each other by elements of a weighted Sobolev space; these connections give rise to parabolic bundles in the sense of Mehta and Seshadri. We show in fact that the moduli space of stable parabolic bundles can be identified with our moduli space of HYM connections, by proving that every stable bundle admits a unique unitary gauge orbit of Hermitian-Yang-Mills connections.