Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Modeling dynamics and stability analysis of pneumonia disease infection with parameters uncertainties control

    Mathematics Open01 Jan 2024

    In this work, a mathematical model of six compartments is formulated, showing the dynamic flow of pneumonia disease in the human population with treatment and vaccination interventions. Equilibria points and stability analyses were carried out using the Lyapunov function approach. Analytically, it is found that at the disease-free equilibrium state, local and global asymptotic stability behaviors are achieved when R0<1, with instability if R0>1. However, at the endemic equilibrium point, asymptotic stability is attainable if R0>1 and instability otherwise. The study indicates that pneumonia disease infection is successfully reduced when treatment and vaccination interventions are administered to the patients. The work also proposes an adaptive sliding mode control approach with a closed-loop control system to manage pneumonia epidemic model uncertainties. This approach intends to reduce disease transmission and infection through successful tracking of defined trajectories and managing uncertainties. For the control rates (u1,u20), the technique managed to track the disease carriers and infectious agents accurately even in the presence of parameter uncertainties. In conclusion, an increase in the control rates (u1,u2) in the existence of parameter uncertainty control systems significantly reduces the number of disease transmitters and infectious agents quicker than in their absence. Hence, this study signifies the pivotal role of treatment and vaccination in the control of pneumonia infection as well as the control of parameter uncertainties by the proposed method.