One electron system minimally coupled to a quantized radiation field is considered. It is assumed that the quantized radiation field is massless, and no infrared cutoff is imposed. The Hamiltonian, H, of this system is defined as a self-adjoint operator acting on L2 (ℝ3) ⊗ ℱ ≅ L2 (ℝ3; ℱ), where ℱ is the Boson Fock space over L2 (ℝ3 × {1, 2}). It is shown that the ground state, ψg, of H belongs to
, where N denotes the number operator of ℱ. Moreover, it is shown that for almost every electron position variable x ∈ ℝ3 and for arbitrary k ≥ 0, ‖(1 ⊗ Nk/2) ψg (x)‖ℱ ≤ Dk e-δ|x|m+1 with some constants m ≥ 0, Dk > 0, and δ > 0 independent of k. In particular
for 0 < β < δ/2 is obtained.