Please login to be able to save your searches and receive alerts for new content matching your search criteria.
For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.
We describe a new application of an existing perfect sampling technique of Corcoran and Tweedie to estimate the self energy of an interacting Fermion model via Monte Carlo summation. Simulations suggest that the algorithm in this context converges extremely rapidly and results compare favorably to true values obtained by brute force computations for low dimensional toy problems. A variant of the perfect sampling scheme which improves the accuracy of the Monte Carlo sum for small samples is also given.