Please login to be able to save your searches and receive alerts for new content matching your search criteria.
To handle large variation data, an interval piecewise regression method with automatic change-point detection by quadratic programming is proposed as an alternative to Tanaka and Lee's method. Their unified quadratic programming approach can alleviate the phenomenon where some coefficients tend to become crisp in possibilistic regression by linear programming and also obtain the possibility and necessity models at one time. However, that method can not guarantee the existence of a necessity model if a proper regression model is not assumed especially with large variations in data. Using automatic change-point detection, the proposed method guarantees obtaining the necessity model with better measure of fitness by considering variability in data. Without piecewise terms in estimated model, the proposed method is the same as Tanaka and Lee's model. Therefore, the proposed method is an alternative method to handle data with the large variations, which not only reduces the number of crisp coefficients of the possibility model in linear programming, but also simultaneously obtains the fuzzy regression models, including possibility and necessity models with better fitness. Two examples are presented to demonstrate the proposed method.
This study proposes fuzzy multiple objective programming to determine the measure of fitness and the number of change-points in an interval piecewise regression model. To increase the measure of fitness, Tanaka and Lee proposed a conceptual procedure, which is a heuristic approach and becomes complicated for determining the proper polynomial. Therefore, a multiple objective approach is adopted to obtain a compromise solution among three objectives — maximizing the measure of fitness, minimizing the number of change-points and minimizing the width to obtain the interval regression models. By using the proposed method, a better measure of fitness can be obtained. Two numerical examples are used as demonstrations to illustrate our approach in more detail.