Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.
Incoloy 800, which is used within steam generator tubes, is a heat resistant material since it is an iron-nickel-chromium alloy. However, construction of a systematic database is needed to receive integrity data defecting insurance of specific data about room and elevated temperature fretting fatigue behavior for Incoloy 800. Accordingly, this study investigates the specific change in fatigue limitations under the condition of the fretting fatigue as compared to that under the condition of the plain fatigue by performing plain and fretting fatigue tests on Incoloy 800 at 320°C, real operating temperature and at room-temperature, respectively. The change in the frictional force is measured during the fretting fatigue testing against the repeated cycle, and the mechanism of fretting fatigue is investigated through the observation of the fatigue-fracture surface.
Fretting fatigue life is traditionally estimated by experiment. The objective of this work is to introduce a special approach for estimation of axial fretting fatigue life at elevated temperatures from plain fatigue test based on the critical distance theory. The method uses Fatemi–Socie parameter as a multiaxial criterion to compute the stress multiaxiality on focus path. This method considers only elastic behavior for materials, and two characteristic diagrams are obtained from plain fatigue tests on two U-shaped and V-shaped notched specimens. The results showed reasonable agreement between the predictions by the proposed method and the experiments for ambient temperature. For elevated temperatures, the results indicated that the predicted fretting fatigue life was considerably overestimated in the low cycle fatigue (LCF) regime and underestimated in the high cycle fatigue (HCF) region with respect to experimental measurements. The reason for such discrepancy is believed to be due to the complex behavior of AL 7075-T6, which exhibits at elevated temperatures because of the problems such as aging, oxidation and reduction of strength.