Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We review a few topics in Planck-scale physics, with emphasis on possible manifestations in relatively low energy. The selected topics include quantum fluctuations of spacetime, their cumulative effects, uncertainties in energy–momentum measurements, and low energy quantum-gravity phenomenology. The focus is on quantum-gravity-induced uncertainties in some observable quantities. We consider four possible ways to probe Planck-scale physics experimentally: (i) looking for energy-dependent spreads in the arrival time of photons of the same energy from GRBs; (ii) examining spacetime fluctuation-induced phase incoherence of light from extragalactic sources; (iii) detecting spacetime foam with laser-based interferometry techniques; (iv) understanding the threshold anomalies in high energy cosmic ray and gamma ray events. Some other experiments are briefly discussed. We show how some physics behind black holes, simple clocks, simple computers, and the holographic principle is related to Planck-scale physics. We also discuss a formulation of the Dirac equation as a difference equation on a discrete Planck-scale spacetime lattice, and a possible interplay between Planck-scale and Hubble-scale physics encoded in the cosmological constant (dark energy).
The emergence of quantum-gravity induced corrective terms for the probability of emission of a particle from a black hole in the Parikh–Wilczek tunneling framework is studied. It is shown, in particular, how corrections might arise from modifications of the surface gravity due to near horizon Planck-scale effects. Our derivation provides an example of the possible linking between Planck-scale departures from Lorentz invariance and the appearance of higher order quantum gravity corrections in the black-hole entropy-area relation.