Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Split Hopkinson Pressure Bar (SHPB) has become a frequently used technique for measuring uni-axial compressive stress-strain relationship of various engineering materials under high strain rates. The pulse shape generated in the incident bar is sensitive to the length of the striker bar. In this paper, a finite element simulation of a Split Hopkinson Pressure Bar is performed to estimate the effect of varying length of striker bar on the stress-strain relationship of a material. A series of striker bars with different lengths, from 200mm to 350mm, are employed to obtain the stress-strain response of AL6061-T6 in both simulation and experiment. A comparison is made between the experimental and the computed stress-strain curves. Finally the influence of variation of striker bar length on the sample's stress-strain response is presented.
Flexible radio-frequency (RF) capacitors and inductors on the plastic substrates have been fabricated and characterized under mechanical bending conditions. A novel method to predict the RF performance for them on different bending states is demonstrated. Artificial neural network (ANN) shows good modeling accuracy for the flexible RF passive components with bending strains from dc to resonant frequency (∼13/2 GHz for the capacitor/inductor). More importantly, the automatically generated ANN model, with no need of repeatedly tuning the model parameters, has demonstrated the ability to predict the RF responses for the flexible capacitors and inductors under arbitrary bending conditions with only a few sets of experimental data. Once established, this model can automatically learn the structure of the input date and predict the actual results on specific bending state which can provide an original method to measure the performance for flexible electronics on even extreme bent radius. The ANN model indicates good potential for accurate design, characterization and optimization of the high-performance flexible electronics.
Disparate industry bodies across the planet use pallets for storing large and heavy objects. Pallets provide an assurance of safe handling of material (cargo) and storage of material in a damage-free environment. In this work, an attempt has been made to analyze and investigate making pallets out of ULTEM 9805 using the latest additive techniques (FDM). The maximum deflections and von Mises stresses are analyzed for the disparate boundary conditions indicating the possible alternatives or loads to be used. Study of surface (morphology) and characteristics was done in order to establish the relationship between pallet surface and its application. The factors of load, maximum and minimum values, ascertained in each stage are 168.15, 522.22, 215.31 and 316.79 kPa as well as 18.77, 6.7, 1.2 and 35.84 kPa for the floor, rack, forklift and conveyor load supports, respectively. A cross-hatched design causes a rise in capacity of the shear factor owing to the length of the span being in correlation with rectilinear fill. The filament of surface, made of ULTEM 9805, exhibits a level of roughness of 43.14 μm on the pallet surface indicating better holding capacity and grip. A 9∘ peak shift is comprehended with respect to XRD, indicating a compressive residual factor measured at 76.47 MPa.