Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Optical oxygen-sensing systems based on the quenching of the photoexcited triplet state of platinum porphyrins—platinum octaethylporphyrin (PtOEP) and platinum tetrakis(pentafluorophenyl)porphyrin (PtTFPP)—in polystyrene (PS) using two different time-resolved spectroscopies (luminescence lifetime measurement and diffuse reflectance laser flash photolysis) have been developed. Using both spectroscopies, the same values of Stern-Volmer constant KSV and quenching rate constant kq (KSV = kqτ0) are obtained. The decays of the luminescence and triplet-triplet reflectance of the platinum porphyrins in PS consisted of two components (faster and slower lifetimes) in the absence and presence of oxygen. For both faster and slower components the lifetime decreases with increasing oxygen concentration. For both components a Stern-Volmer plot of the platinum porphyrin-PS films exhibits linearity. However, kq of the faster component is larger than that of the slower component (for PtOEP, three times larger; for PtTFPP, 40 times larger), indicating that two different oxygen-accessible sites exist in the platinum porphyrin-PS films. The faster and slower components are related to oxygen-accessible sites on the surface and in the bulk of the platinum porphyrin films respectively. Concerning the fractional contributions of each lifetime component, the contribution of the faster component is greater than that of the slower component, indicating that the sensing site on the surface is important for optical sensing. The contribution of different oxygen-accessible sites in platinum porphyrin-PS films for oxygen sensing is clarified by these techniques.
A variety of aromatic and aliphatic aldehydes were oxidized to the corresponding carboxylic acids in the presence of platinum porphyrin, sunlight and air in acetonitrile solvent under mild conditions. Nitrobenzaldehydes were found to be very efficient 1O2 scavengers that quench the formation of acids from any aldehyde in the presence of free-base porphyrin sensitizers. However, nitrobenzaldehydes were converted to the corresponding acids in the presence of platinum porphyrins. The platinum porphyrins are very good and efficient catalysts for a wide range of applications in the aerobic conversion of aldehydes to acids.