Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    INTERACTIONS OF THz VIBRATIONAL MODES WITH CHARGE CARRIERS IN DNA: POLARON-PHONON INTERACTIONS

    This paper presents models and experimental measurements that shed light on THz-phonon mediated transport of polarons in biomolecules. Polaron transport in DNA has been considered recently in view of the expected derealization of charge carriers on a one-dimensional wire as well as the highly charged nature of DNA.1,2 An understanding of the electrical transport properties and THz-phonon interactions of biomolecules is important in view of DNA's potential applications both as electrically conductive wires and as structures that facilitate the chemically-directed assembly of massively integrated ensembles of nanoscale semiconducting elements into terascale integrated networks. Moreover, understanding these interactions provides information of the THz spectrum of vibrational modes in DNA. A primary focus of this paper is on charge transport in biomolecules using indirect-bandgap colloidal nanocrystals linked with biomolecules.3 Through a combination of theoretical and experimental approaches,4-7 this paper focuses on understanding the electrical properties and THz-frequency interactions of DNA. Moreover, this paper presents observed charge transport phenomena in DNA and discusses how these measurements are related to carrier scattering from the THz vibrational modes in DNA. Indeed, carrier transport in DNA is analyzed in light of theoretical calculations of the effects of THz-frequency phonon emission by propagating carriers, THz-frequency phonon absorption by propagating and trapped carriers, and effective mass calculations for specific sequences of the DNA bases.1-7 These studies focus on THz-phonon-mediated processes since an extra carrier on a one-dimensional chain minimizes its energy by forming an extended polaron, and since many biomolecules, including DNA, exhibit THz vibrational spectra.8 Accordingly, these calculations focus on THz-phonon-mediated processes. These results are discussed in terms of the role of THz-phonon-mediated charge trapping and detrapping effects near guanine-rich regions of the DNA as well as on the understanding and identification of DNA with specific base sequences that promote charge transport. As in previous studies, optical excitation is used to inject carriers into DNA wires. Moreover, this paper reports on the use of gel electrophoresis to study charge-induced cleavage of DNA and the related transport of charge in DNA. Phonon absorption and emission from polarons in DNA,9 is analyzed using parameters from the well-known Su-Schrieffer-Heeger Hamiltonian.

  • articleNo Access

    ENVIRONMENTAL EFFECTS INFLUENCING THE VIBRATIONAL MODES OF DNA: NANOSTRUCTURES COUPLED TO BIOMOLECULES

    The interactions of charges in DNA with the vibrational modes in DNA depend on the spectra of these vibrational modes. Using (a) the Su-Schrieffer-Heeger (SSH) Hamiltonian approach, (b) integrated structures of DNA and manmade nanostructures, and (c) gel electrophoresis techniques,1 the interaction between charges in DNA and the vibrational modes of DNA are investigated. As is well-known, DNA has a rich spectrum of modes in the THz spectral regime. The use of manmade nanostructures integrated with DNA facilitates the engineering of nanoscale systems useful in studying the role of environmental effects on the vibrational modes of DNA as well as the interaction of these modes with charge carriers in DNA. Among the DNA-based structures considered in this account are: B-DNA and Z-DNA strands related by a conformational change; and DNA molecules bound on one terminal to indirect bandgap semiconductor quantum dots. Gel electrophoresis is used as a tool for the analysis of carrier interactions in novel integrated DNA-manmade-nanostructure complexes, and models based on the SSH Hamiltonian2 are employed as a means of analyzing the interactions between the vibrational modes of DNA and charge carriers in DNA.3-4

  • chapterNo Access

    INTERACTIONS OF THz VIBRATIONAL MODES WITH CHARGE CARRIERS IN DNA: POLARON-PHONON INTERACTIONS

    This paper presents models and experimental measurements that shed light on THz-phonon mediated transport of polarons in biomolecules. Polaron transport in DNA has been considered recently in view of the expected delocalization of charge carriers on a one-dimensional wire as well as the highly charged nature of DNA.1,2 An understanding of the electrical transport properties and THz-phonon interactions of biomolecules is important in view of DNA's potential applications both as electrically conductive wires and as structures that facilitate the chemically-directed assembly of massively integrated ensembles of nanoscale semiconducting elements into terascale integrated networks. Moreover, understanding these interactions provides information of the THz spectrum of vibrational modes in DNA. A primary focus of this paper is on charge transport in biomolecules using indirect-bandgap colloidal nanocrystals linked with biomolecules.3 Through a combination of theoretical and experimental approaches,4-7 this paper focuses on understanding the electrical properties and THz-frequency interactions of DNA. Moreover, this paper presents observed charge transport phenomena in DNA and discusses how these measurements are related to carrier scattering from the THz vibrational modes in DNA. Indeed, carrier transport in DNA is analyzed in light of theoretical calculations of the effects of THz-frequency phonon emission by propagating carriers, THz-frequency phonon absorption by propagating and trapped carriers, and effective mass calculations for specific sequences of the DNA bases.1-7 These studies focus on THz-phonon-mediated processes since an extra carrier on a one-dimensional chain minimizes its energy by forming an extended polaron, and since many biomolecules, including DNA, exhibit THz vibrational spectra.8 Accordingly, these calculations focus on THz-phonon-mediated processes. These results are discussed in terms of the role of THz-phonon-mediated charge trapping and detrapping effects near guanine-rich regions of the DNA as well as on the understanding and identification of DNA with specific base sequences that promote charge transport. As in previous studies, optical excitation is used to inject carriers into DNA wires. Moreover, this paper reports on the use of gel electrophoresis to study charge- induced cleavage of DNA and the related transport of charge in DNA. Phonon absorption and emission from polarons in DNA,9 is analyzed using parameters from the well-known Su-Schrieffer-Heeger Hamiltonian.

  • chapterNo Access

    ENVIRONMENTAL EFFECTS INFLUENCING THE VIBRATIONAL MODES OF DNA: NANOSTRUCTURES COUPLED TO BIOMOLECULES

    The interactions of charges in DNA with the vibrational modes in DNA depend on the spectra of these vibrational modes. Using (a) the Su-Schrieffer-Heeger (SSH) Hamiltonian approach, (b) integrated structures of DNA and manmade nanostructures, and (c) gel electrophoresis techniques,1 the interaction between charges in DNA and the vibrational modes of DNA are investigated. As is well-known, DNA has a rich spectrum of modes in the THz spectral regime. The use of manmade nanostructures integrated with DNA facilitates the engineering of nanoscale systems useful in studying the role of environmental effects on the vibrational modes of DNA as well as the interaction of these modes with charge carriers in DNA. Among the DNA-based structures considered in this account are: B-DNA and Z-DNA strands related by a conformational change; and DNA molecules bound on one terminal to indirect bandgap semiconductor quantum dots. Gel electrophoresis is used as a tool for the analysis of carrier interactions in novel integrated DNAmanmade-nanostructure complexes, and models based on the SSH Hamiltonian2 are employed as a means of analyzing the interactions between the vibrational modes of DNA and charge carriers in DNA.3-4