Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterOpen Access

    Polygenic resilience score may be sensitive to preclinical Alzheimer’s disease changes

    Late-onset Alzheimer’s disease (LOAD) is a polygenic disorder with a long prodromal phase, making early diagnosis challenging. Twin studies estimate LOAD as 60-80% heritable, and while common genetic variants can account for 30% of this heritability, nearly 70% remains “missing”. Polygenic risk scores (PRS) leverage combined effects of many loci to predict LOAD risk, but often lack sensitivity to preclinical disease changes, limiting clinical utility. Our group has built and published on a resilience phenotype to model better-than-expected cognition give amyloid pathology burden and hypothesized it may assist in preclinical polygenic risk prediction. Thus, we built a LOAD PRS and a resilience PRS and evaluated both in predicting cognition in a dementia-free cohort (N=254). The LOAD PRS had a significant main effect on baseline memory (β=-0.18, P=1.68E-03). Both the LOAD PRS (β=-0.03, P=1.19E-03) and the resilience PRS (β=0.02, P=0.03) had significant main effects on annual memory decline. The resilience PRS interacted with CSF Aβ on baseline memory (β=-6.04E-04, P=0.02), whereby it predicted baseline memory among Aβ+ individuals (β=0.44, P=0.01) but not among Aβ- individuals (β=0.06, P=0.46). Excluding APOE from PRS resulted in mainly LOAD PRS associations attenuating, but notably the resilience PRS interaction with CSF Aβ and selective prediction among Aβ+ individuals was consistent. Although the resilience PRS is currently somewhat limited in scope from the phenotype’s cross-sectional nature, our results suggest that the resilience PRS may be a promising tool in assisting in preclinical disease risk prediction among dementia-free and Aβ+ individuals, though replication and fine-tuning are needed.

  • chapterOpen Access

    Astrocyte Reactivity Polygenic Risk Score May Predict Cognitive Decline in Alzheimer’s Disease

    Alzheimer’s disease (AD) is a polygenic disorder with a prolonged prodromal phase, complicating early diagnosis. Recent research indicates that increased astrocyte reactivity is associated with a higher risk of pathogenic tau accumulation, particularly in amyloid-positive individuals. However, few clinical tools are available to predict which individuals are likely to exhibit elevated astrocyte activation and, consequently, be susceptible to hyperphosphorylated tau-induced neurodegeneration. Polygenic risk scores (PRS) aggregate the effects of multiple genetic loci to provide a single, continuous metric representing an individual’s genetic risk for a specific phenotype. We hypothesized that an astrocyte activation PRS could aid in the early detection of faster clinical decline. Therefore, we constructed an astrocyte activation PRS and assessed its predictive value for cognitive decline and AD biomarkers (i.e., cerebrospinal fluid [CSF] levels of Aβ1-42, total tau, and p-tau181) in a cohort of 791 elderly individuals. The astrocyte activation PRS showed significant main effects on cross-sectional memory (β = -0.07, p = 0.03) and longitudinal executive function (β = -0.01, p = 0.03). Additionally, the PRS interacted with amyloid positivity (p.intx = 0.02), whereby indicating that amyloid burden modifies the association between the PRS and annual rate of language decline. Furthermore, the PRS was negatively associated with CSF Aβ1-42 levels (β = -3.4, p = 0.07) and interacted with amyloid status, such that amyloid burden modifies the association between the PRS and CSF phosphorylated tau levels (p.intx = 0.08). These findings suggest that an astrocyte activation PRS could be a valuable tool for early disease risk prediction, potentially enabling intervention during the interval between pathogenic amyloid and tau accumulation.