Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Highly functionalized drugs delivered via a drug delivery system are expected to have less side effects and higher accumulation rates compared to conventional anticancer drugs. An understanding of the kinetics of drugs contained within a delivery system is necessary to obtain the maximum therapeutic effect. We performed micro-elemental analysis of human pancreatic cancer cells treated with cis-diamminedichloroplatinum(II) (CDDP)-containing polymeric micelles. The results showed that the platinum signals were distributed inside the cellular nuclei and the cytoplasm indicating that CDDP was delivered into the cells. The results from this study will be useful for designing an optimum carrier for platinum-containing anticancer drugs.
The real-time tracking of a single molecule is a very useful technique to demonstrate the dynamics of drugs in vivo. We have succeeded in capturing the specific delivery of trastuzumab conjugated with a Quantum dot and fluorescent substances of various sizes in animal models. These results revealed the particular movements of drugs or particles in the tumor tissues. Knowledge of the detailed movement of particles incorporated in drugs can lead to improvement of the design of drugs. We are applying this single molecular imaging technique to estimate the efficacy of a drug delivery system.