Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Synthesis and characterization of Ni–Au bimetallic nanoparticles

    Bimetallic structure of nanoparticles is of great interest due to their extraordinary properties, especially in combining the specialty of the core and its shell. This work reports the effect of pH on the synthesis of Ni–Au (nickel–gold) bimetallic nanoparticles. The synthesis involves a two-step process where Ni nanoparticles were first synthesized using polyol method with hydrazine as the reducing agent. This was followed by the process of reducing formula to Au in the solution containing pre-prepared Ni to form Ni–Au bimetallic nanoparticles using sodium citrate as the reducing agent. The results obtained from Transmission Electron Microscopy (TEM) show that the process can possibly produce either core-shell structure, or mixture of Ni and Au nanoparticles. Magnetic property of core-shell structure investigated using Vibrating Sample Magnetometer (VSM) demonstrated typical characteristic of ferromagnetic with an increased magnetization as compared to Ni nanoparticles. The saturation magnetization (Ms) and coercivity (Hc) were obtained as 19.1 emu/g and 222.3 Oe, respectively.

  • articleNo Access

    SYNTHESIS OF HIGHLY CRYSTALLINE OLIVINE-TYPE LiFePO4 NANOPARTICLES BY SOLUTION-BASED REACTIONS

    LiFePO4 nanocrystals were synthesized in various polyol media without any further post-heat treatment. The LiFePO4 samples synthesized using three different polyol media namely, diethylene glycol (DEG), triethylene glycol (TEG), and tetraethylene glycol (TTEG), exhibited plate and rod-shaped structures with average sizes of 50–500 nm. The X-ray diffraction (XRD) patterns were indexed on the basis of an olivine structure (space group: Pnma). The samples prepared in DEG, TEG, and TTEG polyol media showed reversible capacities of 123, 155, and 166 mAh/g, respectively, at current density of 0.1 mA/cm2 with no capacity fading and exhibited excellent capacity retention up to the 50th cycle. In particular, the samples showed excellent performances at high rates of 30 and 60 C with high capacity retention. It is assumed that the nanometer size materials (~50 nm) possessing a highly crystalline nature may generate improved performance at high rate current densities.