Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We analyze properties of links which have diagrams with a small number of negative crossings. We show that if a nontrivial link has a diagram with all crossings positive except possibly one, then the signature of the link is negative. If a link diagram has two negative crossings, we show that the signature of the link is nonpositive with the exception of the left-handed Hopf link (possibly, with extra trivial components). We also characterize those links which have signature zero and diagrams with two negative crossings. In particular, we show that if a nontrivial knot has a diagram with two negative crossings then the signature of the knot is negative, unless the knot is a twist knot with negative clasp. We completely determine all trivial link diagrams with two or fewer negative crossings. For a knot diagram with three negative crossings, the signature of the knot is nonpositive except for the left-handed trefoil knot. These results generalize those of Rudolph, Cochran, Gompf, Traczyk and Przytycki, solve [27, Conjecture 5], and give a partial answer to [3, Problem 2.8] about knots dominating the trefoil knot or the trivial knot. We also describe all unknotting number one positive knots.
We apply the concept of braiding sequences to extend the polynomial growth result for Vassiliev invariants to links, tangles and embedded graphs. It implies the non-existence of Vassiliev invariants that depend on any finite number of link polynomial coefficients, and allows to define two norms on the space of Vassiliev invariants. Then we show that (apart from well-known relations) the coefficients of the link polynomials are linearly independent.