Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, some multi-item imperfect production-inventory models without shortages for defective and deteriorating items with uncertain/imprecise holding and production costs and resource constraint have been formulated and solved for optimal production. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is time dependent and known. Uncertain or imprecise space constraint is also considered. The uncertain and imprecise holding and production costs are represented by uncertain and fuzzy variables respectively. These are converted to crisp constraint/numbers using uncertain measure theory for uncertain variable and possibility/necessity measure for fuzzy variable. The multi-item production inventory model is formulated as a constrained single objective cost minimization problem with the help of global criteria method. The reduced problem is then solved using Kuhn-Tucker conditions and generalized reduced gradient(GRG-LINGO 10.0) technique. Form the general model, models for particular cases with different production and demand functions are derived. Models for a single item are also presented. The optimum results for different models are presented in both tabular and graphical forms. Sensitivity analysis of average cost for the general model with respect to the changes in holding and production costs are presented.