Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we study projective algebra, p(M, F), of special (α, β)-metrics. The projective algebra of a Finsler space is a finite-dimensional Lie algebra with respect to the usual Lie bracket. We characterize p(M, F) of Matsumoto and square metrics of isotropic S-curvature of dimension n ≥ 3 as a certain Lie sub-algebra of the Killing algebra k(M, α). We also show that F has a maximum projective symmetry if and only if F either is a Riemannian metric of constant sectional curvature or locally Minkowskian.