Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Flow past a prolate spheroid, which is a representative simplified configuration for vehicles such as maneuvering ships, submarines and missiles, comprises a series of complex flow phenomena including pressure-induced flow separation, which results in unsteady forces and movements that may be detrimental to vehicles’ performance. In this paper, a Delayed Detached Eddy Simulation (DDES) method combined with a new high-order U-MUSCL scheme is proposed to more precisely and accurately capture the flow separation and vortex structure. This method is applied to simulate the aerodynamic performance of the 6:1 prolate spheroid at an AOA of 20∘ with the Reynolds number of 4.2×106. Axial pressure distribution of five individual chord wise sections and flow field structure of the aft body are analyzed. Numerical results agree well with the experimental data. It can be concluded that DDES combined with three-order U-MUSCL scheme demonstrates reliable performance since it captures the vortex structure of aft body distinctly and predicts the separation and reattachment points of the secondary vortex precisely.
Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.
A systematic approach of using the null-field integral equation in conjunction with the degenerate kernel and eigenfunction expansion is employed to solve three-dimensional (3D) Green’s functions of Laplace equation. The purpose of using degenerate kernels for interior and exterior expansions is to avoid calculating the principal values. The adaptive observer system is addressed to employ the property of degenerate kernels in the spherical coordinates and in the prolate spheroidal coordinates. After introducing the collocation points on each boundary and matching boundary conditions, a linear algebraic system is obtained without boundary discretization. Unknown coefficients can be easily determined. Finally, several examples are given to demonstrate the validity of the present approach.
The paper presents the results obtained using the two transport equation based transition models in the RANS framework, viz. kT − kL − ω model of Walters and Cokljat and γ−Reθ SST model of Menter and Langtry. The relative performance of these two transition models for ERCOFTAC T3A flat plate test case at Re = 6.12 × 105 and low Re SD7003 aerofoil at Re = 6 × 104 are discussed in detail and compared with the available experimental/computational data. Finally, the two transitions models are applied to simulate three dimensional flow past a 6:1 prolate spheroid at Re = 4 × 104.