Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper provides a numerical investigation onto the effect of the angular position of a defect on the wave diffusion in a steel pipe. The wave finite element method (WFEM) is used to calculate reflection and transmission coefficients from defects with different angular positions as a function of frequency. The modeled defects are impinged successively by torsional T(0, 1), longitudinal L(0, 2) and flexural F(1, 2) modes. The wave diffusion in each case is examined leading to several important remarks. Results show that the choice of the incident mode as well as the studied reflected and transmitted modes play a crucial role in the circumferential localization of defects in pipes.