Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Manganese silicide (MnSi1.7) semiconductor thin films with a thickness of 80 nm are prepared by magnetron sputtering deposition technology. The reflectivity change of thin film samples is studied by femtosecond (fs) pump–probe technique under different pump pulse energies and the laser pulse width is 120 fs. The results show that the transient reflectivity increases within a time-scale of about 100 fs. Then, a fast decay of reflectivity occurs in 0.6 picosecond (ps), and it is mainly due to the carrier–carrier scattering. Next, a slower decay of the reflectivity on a time-scale of dozens of ps is detected, and the Auger recombination and diffusion are the main processes. The effective mass of electron and hole in MnSi1.7 film are calculated by using the pseudo-potential plane wave method on first-principles methods. The effective mass of electron is 0.25m0 (m0 is the electron mass), while 0.13m0 for hole. Experimental results are explained with the results of theoretical simulation.
Making smaller and faster functional devices has led to an increasing demand for a microscopic technique that allows the investigation of carrier and phonon dynamics with both high spatial and temporal resolutions. Traditional optical pump–probe methods can achieve femtosecond temporal resolution but fall short in the spatial resolution due to the diffraction limit. Scanning tunneling microscopy (STM), on the contrary, has realized atomic-scale spatial resolution relying on the high sensitivity of the tunneling current to the tip-sample distance. However, limited by the electronics bandwidth, STM can only push the temporal resolution to the microseconds scale, restricting its applications to probe various ultrafast dynamic processes. The combination of these two methods takes advantages of optical pump–probe techniques and highly localized tunneling currents of STM, providing one viable solution to track atomic-scale ultrafast dynamics in single molecules and low-dimensional materials. In this review, we will focus on several ultrafast time-resolved STM methods by coupling the tunneling junctions with pulsed electric waves, THz, near-infrared and visible laser. Their applications to probe the carrier dynamics, spin dynamics, and molecular motion will be highlighted. In the end, we will present an outlook on the challenges and new opportunities in this field.