Please login to be able to save your searches and receive alerts for new content matching your search criteria.
On the basis of the Berkovits pure spinor formalism of covariant quantization of supermembrane, we attempt to construct a M(atrix) theory which is covariant under SO(1, 10) Lorentz group. We first construct a bosonic M(atrix) theory by starting with the first-order formalism of bosonic membrane, which precisely gives us a bosonic sector of M(atrix) theory by BFSS. Next we generalize this method to the construction of M(atrix) theory of supermembranes. However, it seems to be difficult to obtain a covariant and supersymmetric M(atrix) theory from the Berkovits pure spinor formalism of supermembrane because of the matrix character of the BRST symmetry. Instead, in this paper, we construct a supersymmetric and covariant matrix model of 11D superparticle, which corresponds to a particle limit of covariant M(atrix) theory. By an explicit calculation, we show that the one-loop effective potential is trivial, thereby implying that this matrix model is a free theory at least at the one-loop level.
In the study of the Type II superstring, it is useful to consider the BRST complex associated to the sum of two pure spinors. The cohomology of this complex is an infinite-dimensional vector space. It is also a finite-dimensional algebra over the algebra of functions of a single pure spinor. In this paper we study the multiplicative structure.