Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Electroacupuncture Preconditioning Attenuates Myocardial Ischemia-Reperfusion Injury in Rats Partially Through Nrf2-Mediated Reduction of Oxidative Stress and Pyroptosis

    Oxidative stress and pyroptosis have been established as key contributors to myocardial ischemia-reperfusion injury (MIRI). While previous studies reported that electroacupuncture (EA) preconditioning exerted cardioprotective effects, the underlying mechanisms remain elusive. Thus, this study aimed to investigate the effects of EA preconditioning on oxidative stress and pyroptosis in MIRI rats, and explore the role of nuclear factor E2-associated factor 2 (Nrf2) throughout that process. A MIRI model was constructed by ligating the left anterior descending coronary artery for 30 min, followed by 4 h of reperfusion in rats. Prior to modeling, rats were subjected to EA at the Neiguan Point for three days. Furthermore, ML385, a Nrf2 inhibitor, was administered in order to examine the role of Nrf2 in regulating oxidative stress and pyroptosis following EA preconditioning. The results revealed that EA preconditioning improved left ventricular function after MIRI and reduced both the myocardial infarction area and cTnT levels. Meanwhile, EA preconditioning alleviated MIRI-induced oxidative stress and pyroptosis, as evidenced by the downregulation of ROS, MDA, NF-κB p65, caspase-1, IL-1β, and GSDMD-N, and the upregulation of SOD and HO-1. Mechanistically, EA up-regulated enhanced the expression of Nrf2. However, its cardioprotective effects and ability to attenuate oxidative stress and pyroptosis were suppressed by the inhibition of Nrf2. Taken together, our study indicated that EA preconditioning attenuated MIRI in rats by mitigating oxidative stress and pyroptosis, with Nrf2 playing a vital role in this protective mechanism.

  • articleNo Access

    Ginsenoside Rh2 Ameliorates Myocardial Infarction by Regulating Cardiomyocyte Pyroptosis Based on Network Pharmacology, Molecular Docking, and Experimental Verification

    Myocardial infarction (MI) is a significant threat to human health worldwide. Following MI, cardiomyocytes (CMs) undergo pyroptosis, exacerbating the damage caused by infarction. Ginseng may play a role in alleviating CM pyroptosis. However, further exploration is needed regarding its main active ingredients and effects. By employing network pharmacology on the active ingredients of ginseng, MI and pyroptosis, and employing molecular docking between such ingredients and pyroptosis-related proteins, we screened for the main ingredient of ginseng. Through network pharmacology and molecular docking, we identified ginsenoside Rh2, which acts on MI and cell pyroptosis, as the most likely active ingredient that stably binds to pyroptosis-related proteins. We subsequently constructed a neonatal rat CM oxygen–glucose deprivation (OGD) model in vitro and an MI mouse model in vivo. Ginsenoside Rh2 was administered, with losartan used as a positive control. In the in vitro OGD model, ginsenoside Rh2 increased the viability of primary rat CMs and mitigated OGD-induced pyroptosis. In the in vivo MI model, ginsenoside Rh2 reduced CM pyroptosis, decreased infarct size, and subsequently improved cardiac function. Our study provides a novel therapeutic strategy for MI by attenuating CM pyroptosis.

  • articleNo Access

    Wogonin Ameliorated Obesity-Induced Lipid Metabolism Disorders and Cardiac Injury via Suppressing Pyroptosis and Deactivating IL-17 Signaling Pathway

    Obesity leads to structural and functional changes in the heart and has become a global burden of disease. Wogonin is a natural flavonoid which possesses cardioprotective, neuroprotective, and anti-cancer properties. However, the effects of wogonin on obesity-induced cardiac injury remain unclear. In this study, the high-fat diet (HFD)-induced obese mice model was successfully established. Moreover, HFD induced a fat mass and cardiac injury in mice. More importantly, wogonin treatment reduced fat mass and improved cardiac function of HFD mice. Consistently, wogonin ameliorated myocardial lipid metabolism in HFD-induced obese mice by reducing triglyceride (TC), total cholesterol (TG), and non-esterified fatty acid (NEFA) levels in serum, as well as the TG and free fatty acids (FFA) levels in heart tissues. Interestingly, wogonin treatment alleviated myocardial pyroptosis in HFD-induced obese mice. Through bioinformatic analysis, the IL-17 signaling pathway was predicted to be modulated by wogonin. Results showed that wogonin deactivated the IL-17 signaling pathway in HFD mice. These findings suggested that wogonin ameliorated obesity-induced disorders of lipid metabolism and cardiac injury via suppressing pyroptosis and deactivating the IL-17 signaling pathway, which provided a novel therapeutic strategy for HFD-induced cardiac injury.

  • articleNo Access

    Sinapic Acid Alleviates Acute Pancreatitis in Association with Attenuation of Inflammation, Pyroptosis, and the AMPK/NF-κB Signaling Pathway

    Among the diseases of the digestive system, the incidence of acute pancreatitis (AP) has increased. Although the AP is primarily self-limited, mortality remains high when it progressed to severe acute pancreatitis (SAP). Despite significant advances in new drug development, treatments for AP are not ideal. Here, we discovered a novel hydroxycinnamic acid, sinapic acid (SA), which is widely distributed in plants and is an effective treatment for AP. Using in vitro and in vivo models, we demonstrated that pretreatment with SA ameliorated cerulein-induced pancreatic damage and inflammation and inhibited the activation of Caspase-1 and Caspase-11, which mediate pyroptosis of pancreatic acinar cells during AP. These effects may occur through the inhibition of AMPK phosphorylation and downregulation of NF-κB. Our findings demonstrate the therapeutic effects and reveal the underlying mechanisms of SA, which warrants its further study as an effective treatment for AP.

  • articleNo Access

    Chicoric Acid Presented NLRP3-Mediated Pyroptosis through Mitochondrial Damage by PDPK1 Ubiquitination in an Acute Lung Injury Model

    Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. C57BL/6 mice were given injections of liposaccharide (LPS) to establish the in vivo model. Meanwhile, BMDM cells were stimulated with LPS+ATP to build the in vitro model. CA significantly alleviated inflammation and oxidative stress in both the in vivo and in vitro models of ALI through the inhibition of NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis. In addition, CA attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis in the in vivo and in vitro models of ALI by suppressing the production of reactive oxygen species (ROS) via inhibiting the Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. CA inhibited the interaction between Akt at T308 and phosphoinositide-dependent kinase-1 (PDPK1) at S549, thus promoting the phosphorylation of the Akt protein. Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.

  • articleNo Access

    Effects of Chinese Medicine on Pyroptosis in Coronary Heart Disease

    Pyroptosis, an apoptotic pathway for pro-inflammatory cells, has attracted attention from researchers because of its role in the development of cardiac inflammation reactions. Chinese medicine (CM) has been given more and more attention during the pursuit of a treatment for coronary heart disease (CHD). Evidence suggests that myocardial cell pyroptosis affects the progression of CHD. Pyroptosis pathways include the canonical pyroptosis pathway mediated by the caspase-1 inflammasome and the non-canonical pyroptosis pathway induced by cytoplasmic lipopolysaccharide-activated caspase-4/5/11. The frequently studied compounds that regulate pyroptosis in CHD include astragaloside IV (AS-IV), tanshinone IIA, aucubin, cinnamaldehyde (CD), ginsenoside Rb1, paeoniflorin, apigenin, berberine (BBR), ruscogenin (Rus), and total glucosides of paeonia (TGP). The patent drugs of CM that regulate pyroptosis in CHD include the Qishen granule (QSG), the Simiao Yong’an decoction (SMYAD), the Buyang Huanwu decoction (BYHWD), and the Shexiang Baoxin pill (SBP). Therefore, this paper reviews the pathogenesis of pyroptosis, the role of pyroptosis in CHD, and the potential therapeutic roles of CMs and their active ingredients targeting cell pyroptosis in the development of CHD.

  • articleNo Access

    Astragaloside IV Alleviates Doxorubicin-Induced Cardiotoxicity by Inhibiting Cardiomyocyte Pyroptosis through the SIRT1/NLRP3 Pathway

    Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.

  • articleNo Access

    Ginsenoside Rg2 Attenuates Aging-Induced Liver Injury via Inhibiting Caspase 8-Mediated Pyroptosis, Apoptosis and Modulating Gut Microbiota

    Aging is an irresistible natural law of the progressive decline of body molecules, organs, and overall function with the passage of time, resulting in eventual death. World Health Organization data show that aging is correlated with a wide range of common chronic diseases in the elderly, and is an essential driver of many diseases. Panax Ginseng C.A Meyer is an ancient herbal medicine, which has an effect of “long service, light weight, and longevity” recorded in the ancient Chinese medicine book “Compendium of Materia Medica.” Ginsenoside Rg2, the main active ingredient of ginseng, also exerts a marked effect on the treatment of liver injury. However, it remains unclear whether Rg2 has the potential to ameliorate aging-induced liver injury. Hence, exploring the hepatoprotective properties of Rg2 and its possible molecular mechanism by Senescence Accelerate Mouse Prone 8 (SAMP8) and gut microbiota. Our study demonstrated that Rg2 can inhibit pyroptosis and apoptosis through caspase 8, and regulate the gut-liver axis to alleviate liver inflammation by changing the composition of gut microbiota, thus improving aging-induced liver injury. These findings provide theoretical support for the pharmacological effects of ginsenosides in delaying aging-induced liver injury.

  • articleNo Access

    Investigating the effect of pyroptosis on the slow CD4+ T cell depletion in HIV-1 infection, by dynamical analysis of its discontinuous mathematical model

    HIV infection is one of the most serious causes of death throughout the world. CD4+ T cells which play an important role in immune protection, are the primary targets for HIV infection. The hallmark of HIV infection is the progressive loss in population of CD4+ T cells. However, the pathway causing this slow T cell decline is poorly understood [16].

    This paper studies a discontinuous mathematical model for HIV-1 infection, to investigate the effect of pyroptosis on the disease. For this purpose, we use the theory of discontinuous dynamical systems. In this way, we can better analyze the dynamical behavior of the HIV-1 system. Especially, considering the dynamics of the system on its discontinuity boundary enables us to obtain more comprehensive results rather than the previous researches. A stability region for the system, corresponding to its equilibria on the discontinuity boundary, will be determined. In such a parametric region, the trajectories of the system will be trapped on the discontinuity manifold forever. It is also shown that in the obtained stability region, the disease can lead to a steady state in which the population of uninfected T cells and viruses will preserve at a constant level of cytokines. This means that the pyroptosis will be restricted and the disease cannot progress for a long time. Some numerical simulations based on clinical and experimental data are given which are in good agreement with our theoretical results.