Dans cet article, nous nous intéressons à un q-analogue aux entiers positifs de la fonction zêta de Riemann, que l'on peut écrire pour s ∈ ℕ* sous la forme ζq(s) = ∑k≥1qk∑d|kds-1. Nous donnons une nouvelle minoration de la dimension de l'espace vectoriel sur ℚ engendré, pour 1/q ∈ ℤ\{-1; 1} et A entier pair, par 1, ζq(3), ζq(5), …, ζq(A - 1). Ceci améliore un résultat récent de Krattenthaler, Rivoal et Zudilin ([13]). En particulier notre résultat a pour conséquence le fait que pour 1/q ∈ ℤ\{-1; 1}, au moins l'un des nombres ζq(3), ζq(5), ζq(7), ζq(9) est irrationnel.
In this paper, we focus on a q-analogue of the Riemann zeta function at positive integers, which can be written for s ∈ ℕ* by ζq(s) = ∑k≥1qk∑d|kds-1. We give a new lower bound for the dimension of the vector space over ℚ spanned, for 1/q ∈ ℤ\{-1; 1} and an even integer A, by 1, ζq(3), ζq(5), …, ζq(A-1). This improves a recent result of Krattenthaler, Rivoal and Zudilin ([13]). In particular, a consequence of our result is that for 1/q ∈ ℤ\{-1; 1}, at least one of the numbers ζq(3), ζq(5), ζq(7), ζq(9) is irrational.