Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper argues that mechanisms underlying consciousness and qualia are likely to arise from the information processing that takes place within the detailed micro-structure of the cerebral cortex. It looks at two key issues: how any information processing system can recognize its own activity; and secondly, how this behavior could lead to the subjective experience of qualia. In particular, it explores the pattern processing capabilities of attractor networks, and the way that they can attribute meaning to their input patterns and goes on to show how these capabilities can lead to self-recognition. The paper suggests that although feedforward processing of information can be effective without attractor behavior, when such behavior is initiated, it would lead to self-recognition in those networks involved. It also argues that attentional mechanisms are likely to play a key role in enabling attractor behavior to take place. The paper explores the ability of attractor networks to generate representations of the meaning they assign to input patterns. It goes on to show how the way that they interpret representations of their own activity could give rise to qualia. The paper includes an examination of some limited neurobiological evidence that supports the theory outlined.
This paper explores the implications of a recently published theory that relates the experience of qualia to the attractor activity in networks of pyramidal cells in the cerebral cortex. The paper builds on this theory, and aims to link activity in different networks to the nature of the qualia experienced. Some basic links between network activity and qualia experiences are initially presented, showing the importance of learning, and the paper then proceeds to relate these mechanisms to the qualia experienced during sensory perception. The paper argues that attractor behavior in networks of layer 2/3 pyramidal neurons could underpin the vivid sensory qualia of perception, and attractor behavior in networks of layer 5A pyramidal neurons could have a role in the more understanding kind of perceptual qualia. Communication between these networks is explored to suggest their involvement in putting incoming sensory information into the context of all prior experience, and the understanding that could result.
Consciousness is a topic of considerable human curiosity with a long history of philosophical analysis and debate. We consider there is nothing particularly complicated about consciousness when viewed as a necessary process of the vertebrate nervous system. Here, we propose a physiological "explanatory gap" is created during each present moment by the temporal requirements of neuronal activity. The gap extends from the time exteroceptive and proprioceptive stimuli activate the nervous system until they emerge into consciousness. During this "moment", it is impossible for an organism to have any conscious knowledge of the ongoing evolution of its environment. In our schematic model, a mechanism of "afference copy" is employed to bridge the explanatory gap with consciously experienced percepts. These percepts are fabricated from the conjunction of the cumulative memory of previous relevant experience and the given stimuli. They are structured to provide the best possible prediction of the expected content of subjective conscious experience likely to occur during the period of the gap. The model is based on the proposition that the neural circuitry necessary to support consciousness is a product of sub/preconscious reflexive learning and recall processes. Based on a review of various psychological and neurophysiological findings, we develop a framework which contextualizes the model and briefly discuss further implications.
A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain — referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
It is argued that qualia are the primary way in which sensory information manifests itself in mind. Qualia are not seen as properties of the physical world, ready to be observed; instead it is argued that they are the way in which the sensory system's response to the sensed stimuli manifests itself inside the system. Systems that have qualia have direct and transparent access to this response. It is argued that even though qualia are produced inside the head, they appear to be outside because this appearance complies with our motions, small and large, in the word. To be conscious in the way that we experience it is to have qualia. True conscious machines must have qualia, but the qualities of machine qualia need not be similar to the qualities of human qualia.
In this short paper I will introduce an idea which, I will argue, presents a fundamental additional challenge to the machine consciousness community. The idea takes the questions surrounding phenomenology, qualia and phenomenality one step further into the realm of intersubjectivity but with a twist, and the twist is this: that an agent's intersubjective experience is deeply felt and necessarily co-affective; it is enkinaesthetic, and only through enkinaesthetic awareness can we establish the affective enfolding which enables first the perturbation, and then the balance and counter-balance, the attunement and co-ordination of whole-body interaction through reciprocal adaptation.
A critique of some central themes in Pentti Haikonen's recent book, Consciousness and Robot Sentience, is offered. Haikonen maintains that the crucial question concerning consciousness is how the inner workings of the brain or an artificial system can appear, not as inner workings, but as subjective experience. It is argued here that Haikonen's own account fails to answer this question, and that the question is not in fact the right one to ask anyway. It is argued that making the required changes to the question reveals an important lacuna in Haikonen's explanation of consciousness.
The popular expectation is that Artificial Intelligence (AI) will soon surpass the capacities of the human mind and Strong Artificial General Intelligence (AGI) will replace the contemporary Weak AI. However, there are certain fundamental issues that have to be addressed before this can happen. There can be no intelligence without understanding, and there can be no understanding without getting meanings. Contemporary computers manipulate symbols without meanings, which are not incorporated in the computations. This leads to the Symbol Grounding Problem; how could meanings be incorporated? The use of self-explanatory sensory information has been proposed as a possible solution. However, self-explanatory information can only be used in neural network machines that are different from existing digital computers and traditional multilayer neural networks. In humans, self-explanatory information has the form of qualia. To have reportable qualia is to be phenomenally conscious. This leads to the hypothesis about an unavoidable connection between the solution of the Symbol Grounding Problem and consciousness. If, in general, self-explanatory information equals to qualia, then machines that utilize self-explanatory information would be conscious.
Previous work [Chrisley & Sloman, 2016, 2017] has argued that a capacity for certain kinds of meta-knowledge is central to modeling consciousness, especially the recalcitrant aspects of qualia, in computational architectures. After a quick review of that work, this paper presents a novel objection to Frank Jackson’s Knowledge Argument (KA) against physicalism, an objection in which such meta-knowledge also plays a central role. It is first shown that the KA’s supposition of a person, Mary, who is physically omniscient, and yet who has not experienced seeing red, is logically inconsistent, due to the existence of epistemic blindspots for Mary. It is then shown that even if one makes the KA consistent by supposing a more limited physical omniscience for Mary, this revised argument is invalid. This demonstration is achieved via the construction of a physical fact (a recursive conditional epistemic blindspot) that Mary cannot know before she experiences seeing red for the first time, but which she can know afterward. After considering and refuting some counter-arguments, the paper closes with a discussion of the implications of this argument for machine consciousness, and vice versa.
A novel form of neurocomputing allows machines to generate new concepts along with their anticipated consequences, all encoded as chained associative memories. Knowledge is accumulated by the system through direct experience as network chaining topologies form in response to various environmental input patterns. Thereafter, random disturbances to the connections joining these nets promote the formation of alternative chaining topologies representing novel concepts. The resulting ideational chains are then reinforced or weakened as they incorporate nets containing memories of impactful events or things. Such encodings of entities, actions, and relationships as geometric forms composed of artificial neural nets may well suggest how the human brain summarizes and appraises the states of nearly a hundred billion cortical neurons. It may also be the paradigm that allows the scaling of synthetic neural systems to brain-like proportions to achieve sentient artificial general intelligence (SAGI).
If qualia are mental, and if the mental is functional, then so are qualia. But, arguably, qualia are not functional. A resolution of this is offered based on a formal similarity between qualia and numbers. Just as certain sets “play the role of” the number 3 in Peano’s axioms, so a certain physical implementation of a color plays the role of, say, red in a (computational) cognitive agent’s “cognitive economy”.
It is noted that there are many different definitions of and views about qualia, and this makes qualia into a vague concept without much theoretical and constructive value. Here, qualia are redefined in a more general way. It is argued that the redefined qualia will be essential to the mind–body problem, the problem of consciousness and also to the symbol grounding problem, which is inherent in physical symbol systems. Then, it is argued that the redefined qualia are necessary for Artificial Intelligence systems for the operation with meanings. Finally, it is proposed that robots with qualia may be conscious.
Will Artificial Intelligence soon surpass the capacities of the human mind and will Strong Artificial General Intelligence replace the contemporary Weak AI? It might appear to be so, but there are certain fundamental issues that have to be addressed before this can happen. There can be no intelligence without understanding, and there can be no understanding without getting meanings. Contemporary computers manipulate symbols without meanings, which are not incorporated in the computations. This leads to the Symbol Grounding Problem; how could meanings be incorporated? The use of self-explanatory sensory information has been proposed as a possible solution. However, self-explanatory information can only be used in neural network machines that are different from existing digital computers and traditional multilayer neural networks. In humans self-explanatory information has the form of qualitative sensory experiences, qualia. To have reportable qualia is to be phenomenally conscious. This leads to the hypothesis about an unavoidable connection between the solution of the Symbol Grounding Problem and consciousness. If, in general, self-explanatory information equals to qualia, then machines that utilize self-explanatory information would be conscious. The author presents the associative neural architecture HCA as a solution to these problems and the robot XCR-1 as its partial experimental verification.
I propose and defend the Allocentric-Egocentric Interface Theory of Consciousness. Mental processes form a hierarchy of mental representations with maximally egocentric (self-centered) representations at the bottom and maximally allocentric (other-centered) representations at the top. Phenomenally conscious states are states that are relatively intermediate in this hierarchy. More specifically, conscious states are hybrid states that involve the reciprocal interaction between relatively allocentric and relatively egocentric representations. Thus a conscious state is composed of a pair of representations interacting at the Allocentric-Egocentric Interface. What a person is conscious of is determined by what the contributing allocentric and egocentric representations are representations of. The phenomenal character of conscious states is identical to the representational content of the reciprocally interacting egocentric and allocentric representations.
Quantum computing (QC) is imminent; can it add to the seasoned fields of electronic and computer music? After all, it seems unwarranted to requisition time on a massively parallel peta FLOP (1015, quadrillion calculations per second) supercomputer like the Chinese Sunway TaihuLight, the world’s fastest, reaching 93.015 pFLOPS. There is however, something QCs will be able to do that will remain impossible on even a putative yottaFLOP (1024) Turing machine if Cartesian interactive dualism is the correct solution to the problem of awareness/consciousness. A special, 2nd generation class of conscious-QC modeled after the mind-body interface will be able to transduce physically real stored (extracellular) elements of mind (qualia): thought, mood, feelings, emotion directly into the awareness of the subject in a manner breaking down the so-called 1st person - 3rd person barrier. The theoretical model introduced, a paradigm shift in terms of current thinking in Cognitive Science (mind = brain) or cognitive musicology, is sufficiently mature to be experimentally testable suggesting that conscious-QC music may only be a couple of decades away.
Neurobiological naturalism, an extension of John Searle's concept of biological naturalism, says primary (sensory) consciousness is a scientifically tractable problem based on natural laws although brains that possess consciousness display certain advanced neurobiological system-features. These features are complex, fast, hierarchical, system-wide, internal, and often topographically organized neuron-neuron interactions. We lay out the neurophilosophical problem of the ontological irreducibility of the subjective to the objective, describe the general and special neurobiological features of the conscious neural hierarchies in vertebrates, and then bring in evolutionary considerations to show how consciousness could have evolved in the first vertebrates. Our combined neurobiological, neuroevolutionary and neurophilosophical approach offers a solution to the hard problem of how and why physical brains can cause experiences and why consciousness and subjectivity are neurontologically irreducible.
Electromagnetic quantum field interactions provide a deeper understanding of the emergence of consciousness through an ontological interpretation of quantum mechanics. Quasiparticle interactions in brain matter can produce “virtual” particles, hitherto mathematical conveniences, which reflect the manifold images of brain activities in terms of effects on charged particles that have physical quantum effect similar to the Aharonov-Bohm effect in quantum field theory. Electromagnetic potentials in the quantum domain pervade the entire brain through causative interactions. The exchange of energy quanta during quantum field interactions emerge as distinct patterns of quasiparticles and their entanglement produces waves of “virtual” particles with periodicities of discrete energies tethered through a common quantum potential as they interact and collectively represent the emergence of self-awareness as a quantum dynamic effect carried on the magnetic vector potential throughout the brain. This is caused by the magnetic dipole moments sensitivity to the phase shifts entrained by the zeitgeber acting on dipolar molecules in interfacial water. The emergence of consciousness is inseparable (spatiotemporally) in the sense that the endogenous electromagnetic field (and therefore the forces acting on the particles) vanish yet neurophenomenologically separate from the physical through the magnetic dipole moments sensitivity to the phase shifts of the coherent system. The subjective aspect of consciousness or phenomenal consciousness facilitates qualia as quantum information through information-physical interactions that metastabilize into rhythms unfolding through resonance into access consciousness as cognizable associable representations of subjective experiences. The transition from subjectivity occurs non-reductively from the microlevel to the macrolevel as a mechanism of spontaneous breaking of symmetry resulting from “photon” behavior of interfacial water instantiated by macroergic effects in the nuclei of neurons through a continuous supply of metabolic energy. The emergence of consciousness in living organisms disappears once autopoietic processes in populations of neurons cease to function.
The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically “orchestrated” coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi-Penrose (DP) scheme of “objective reduction” (“OR”) of the quantum state. This orchestrated OR activity (“Orch OR”) is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space-time geometry, so Orch OR suggests that there is a connection between the brain's biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce novel suggestions of (1) beat frequencies of faster Orch OR microtubule dynamics (e.g. megahertz) as a possible source of the observed electroencephalographic ("EEG") correlates of consciousness and (2) that OR played a key role in life's evolution. We conclude that consciousness plays an intrinsic role in the universe.