Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    QUANTUM AMPLITUDES IN BLACK-HOLE EVAPORATION: COMPLEX APPROACH AND SPIN-0 AMPLITUDE

    This paper is concerned with the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space–time and weak radiation at a very late time. We evaluate quantum amplitudes (not just probabilities) for transitions from initial to final states. This quantum description shows that no information is lost in collapse to a black hole. Boundary data for the gravitational field and (in this paper) a scalar field are posed on an initial space-like hypersurface ΣI and a final surface ΣF. These asymptotically flat three-surfaces are separated by a Lorentzian proper-time interval T (typically very large), as measured at spatial infinity. The boundary-value problem is made well-posed, both classically and quantum-mechanically, by a rotation of T into the lower-half complex plane: T → |T|exp(- iθ), with 0 < θ ≤ π/2. This corresponds to Feynman's +iϵ prescription. We consider the classical boundary-value problem and calculate the second-variation classical Lorentzian action formula as a functional of the boundary data. Following Feynman, the Lorentzian quantum amplitude is recovered in the limit θ → 0+ from the well-defined complex-T amplitude. Dirac's canonical approach to the quantisation of constrained systems shows that, for locally supersymmetric theories of gravity, the amplitude is exactly semi-classical, namely formula for weak perturbations, apart from delta functionals of the supersymmetry constraints. We treat such quantum amplitudes for weak scalar-field configurations on ΣF, taking (for simplicity) the weak final gravitational field to be spherically symmetric. The treatment involves adiabatic solutions to the scalar wave equation. This considerably extends work reported in previous papers, by giving explicit expressions for the real and imaginary parts of such quantum amplitudes.

  • articleNo Access

    Thirty Years of Quantum Computing

    The possibility of building a quantum computer is critically analyzed. The main point is that the general state of the hypothetical quantum computer with N qubits is characterized by 2N quantum amplitudes, which are complex numbers restricted by the normalization condition only. It looks highly improbable that it will ever be possible to keep under our control this number of complex parameters even for modest values of N 50 or 100.