In this paper we study a class of quantum Markov semigroups whose restriction to an abelian sub-algebra coincides, on the configurations with finite support, with the exclusion type semigroups introduced in Liggett's book14 of exchange rates
not symmetric in the index site r, s. We find a sufficient condition for the existence of infinitely many faithful diagonal (or classical) invariant states for the semigroup, that satisfy a quantum detailed balance condition. This class of semigroups arises naturally in the stochastic limit of quantum interacting particles in the sense of Accardi and Kozyrev.1 We call these semigroups asymmetric exclusion quantum Markov semigroups and the associated processes asymmetric exclusion quantum processes.