Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We study the state feedback stabilization of a quantum harmonic oscillator near a pre-specified Fock state (photon number state). Such a state feedback controller has been recently implemented on a quantized electromagnetic field in an almost lossless cavity. Such open quantum systems are governed by a controlled discrete-time Markov chain in the unit ball of an infinite dimensional Hilbert space. The control design is based on an unbounded Lyapunov function that is minimized at each time-step by feedback. This ensures (weak-*) convergence of probability measures to a final measure concentrated on the target Fock state with a pre-specified probability. This probability may be made arbitrarily close to 1 by choosing the feedback parameters and the Lyapunov function. They are chosen so that the stochastic flow that describes the Markov process may be shown to be tight (concentrated on a compact set with probability arbitrarily close to 1). Convergence proof uses Prohorov's theorem and specific properties of this Lyapunov function.
Quantum control theory is profitably reexamined from the perspective of quantum information, two results on the role of quantum information technology in quantum feedback control are presented and two quantum feedback control schemes, teleportation-based distant quantum feedback control and quantum feedback control with quantum cloning, are proposed. In the first feedback scheme, the output from the quantum system to be controlled is fed back into the distant actuator via teleportation to alter the dynamics of system. The result theoretically shows that it can accomplish some tasks such as distant feedback quantum control that Markovian or Bayesian quantum feedback can not complete. In the second feedback strategy, the design of quantum feedback control algorithms is separated into a state recognition step, which gives "on-off" signal to the actuator through recognizing some copies from the cloning machine, and a feedback (control) step using another copies of cloning machine. A compromise between information acquisition and measurement disturbance is established, and this strategy can perform some quantum control tasks with coherent feedback.
Quantum control strategy is discussed from the perspective of quantum information. First, the constraints imposed on quantum control by quantum theory are analyzed. Then some quantum control schemes based on quantum information are discussed, such as teleportation-based distant quantum control, quantum feedback control using quantum cloning and state recognition, quantum control based on measurement and Grover iteration. Finally, some applications of quantum control theory in quantum information and quantum computation such as quantum error correction coding, universality analysis of quantum computation, feedback-induced entanglement enhancement, etc., are presented and the potential applications of quantum control are also prospected.
One of the crucial tasks in quantum systems is to reduce the effects of decoherence due to the unavoidable interactions between a system and its environment. Many protection schemes have been proposed recently, among them the weak measurement quantum measurement reversal (WMQMR), weak measurement-based quantum feedback control (QFBC) and quantum feedforward control (QFFC) are reviewed in this paper. By considering weak measurement, the aim is to find a balance between information gain and disturbance of the system caused by the measurement. We classify different types of measurement and give the definition of noise sources and their effects on the state of the system. Finally, we compare and analyze the performance of the discussed protection schemes for different noise sources by numerical simulations.