Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Since spectral invariants were introduced in cotangent bundles via generating functions by Viterbo in the seminal paper [73], they have been defined in various contexts, mainly via Floer homology theories, and then used in a great variety of applications. In this paper we extend their definition to monotone Lagrangians, which is so far the most general case for which a “classical” Floer theory has been developed. Then, we gather and prove the properties satisfied by these invariants, and which are crucial for their applications. Finally, as a demonstration, we apply these new invariants to symplectic rigidity of some specific monotone Lagrangians.