System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
We study the spin-1/2 and spin-1 Heisenberg antiferromagnets (HAFs) on an infinite, anisotropic, two-dimensional triangular lattice, using the coupled cluster method. With respect to an underlying square-lattice geometry the model contains antiferromagnetic (J1 > 0) bonds between nearest neighbours and competing bonds between next-nearest-neighbours across only one of the diagonals of each square plaquette, the same diagonal in each square. In a topologically equivalent triangular-lattice geometry the model has two sorts of nearest-neighbour bonds, with bonds along parallel chains and with J1 bonds providing an interchain coupling. The model thus interpolates between an isotropic HAF on the square lattice at one extreme (κ = 0) and a set of decoupled chains at the other (κ → ∞), with the isotropic HAF on the triangular lattice in between at κ = 1. For the spin-1/2 model, we find a weakly first-order (or possibly second-order) quantum phase transition from a Néel-ordered state to a helical state at a first critical point at κc1 = 0.80 ± 0.01, and a second critical point at κc2 = 1.8 ± 0.4 where a first-order transition occurs between the helical state and a collinear stripe-ordered state. For the corresponding spin-1 model we find an analogous transition of the second-order type at κc1 = 0.62 ± 0.01 between states with Néel and helical ordering, but we find no evidence of a further transition in this case to a stripe-ordered phase.
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influences the phase transition at the percolation threshold. While it is well known that thermal fluctuations generically destroy long-range order on the critical percolation cluster, the effects of quantum fluctuations are more subtle. In diluted quantum magnets with and without dissipation, this leads to novel universality classes for the zero-temperature percolation quantum phase transition. Observables involving dynamical correlations display nonclassical scaling behavior that can nonetheless be determined exactly in two dimensions.
We study the spin-1/2 and spin-1 Heisenberg antiferromagnets (HAFs) on an infinite, anisotropic, two-dimensional triangular lattice, using the coupled cluster method. With respect to an underlying square-lattice geometry the model contains antiferromag-netic ( J1 > 0) bonds between nearest neighbours and competing bonds between next-nearest-neighbours across only one of the diagonals of each square plaquette, the same diagonal in each square. In a topologically equivalent triangular-lattice geometry the model has two sorts of nearest-neighbour bonds, with bonds along parallel chains and with J1 bonds providing an interchain coupling. The model thus interpolates between an isotropic HAF on the square lattice at one extreme (k = 0) and a set of decoupled chains at the other (k → ∞), with the isotropic HAF on the triangular lattice in between at k = 1. For the spin-1/2 model, we find a weakly first-order (or possibly second-order) quantum phase transition from a Néel-ordered state to a helical state at a first critical point at kc1 = 0.80 ± 0.01, and a second critical point at kc2 = 1.8 ± 0.4 where a first-order transition occurs between the helical state and a collinear stripe-ordered state. For the corresponding spin-1 model we find an analogous transition of the second-order type at kc1 = 0.62 ± 0.01 between states with Néel and helical ordering, but we find no evidence of a further transition in this case to a stripe-ordered phase.