Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleFree Access

    BOUND STATE WAVE FUNCTIONS THROUGH THE QUANTUM HAMILTON–JACOBI FORMALISM

    The bound state wave functions for a wide class of exactly solvable potentials are found by utilizing the quantum Hamilton–Jacobi formalism of Leacock and Padgett. It is shown that, exploiting the singularity structure of the quantum momentum function, until now used only for obtaining the bound state energies, one can straightforwardly find both the eigenvalues and the corresponding eigenfunctions. After demonstrating the working of this approach through a few solvable examples, we consider Hamiltonians, which exhibit broken and unbroken phases of supersymmetry. The natural emergence of the eigenspectra and the wave functions, in both unbroken and the algebraically nontrivial broken phase, demonstrates the utility of this formalism.

  • articleNo Access

    QUANTUM HAMILTON–JACOBI ANALYSIS OF PT SYMMETRIC HAMILTONIANS

    We apply the quantum Hamilton–Jacobi formalism, naturally defined in the complex domain, to complex Hamiltonians, characterized by discrete parity and time reversal (PT) symmetries and obtain their eigenvalues and eigenfunctions. Examples of both quasi-exactly and exactly solvable potentials are analyzed and the subtle differences, in the singularity structures of their quantum momentum functions, are pointed out. The role of the PT symmetry in the complex domain is also illustrated.