Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The photon anticorrelation experiment is simulated with the unquantized Maxwell field by implementing realistic instrument bandwidth and signal to noise ratio. The results strongly violate an inequality believed to be satisfied by all semiclassical theories, which opens up a classical interpretation that rivals quantum optics and casts doubt on potential quantum computer applications that involve optical fields.
In the last three decades, a lot of research has been devoted to the optical response of an atomic media in near-to-resonant conditions and to how nonlinear optical properties are enhanced in these systems. However, as current research turns its attention towards multi-level and multidimensional systems interacting with several electromagnetic fields, the ever-increasing complexity of these problems makes it difficult to treat the semiclassical model of the Maxwell–Bloch equations analytically without any strongly-limiting approximations. Thus, numerical methods and particularly robust and fast computational tools, capable of addressing such class of modern and future problems in photonics, are mandatory. In this paper, we describe the development and implementation of a Maxwell–Bloch numerical solver that exploits the massive parallelism of the GPUs to tackle efficiently problems in multidimensional settings or featuring Doppler broadening effects. This constitutes a simulation tool that is capable of addressing a vast class of problems with considerable reduction of simulation time, featuring speedups up to 15 compared with the same codes running on a CPU.
The probability of correlated emission of fluorescent photons as a function of detection directions has been investigated. The model system comprises identical two-level atoms arranged in the form of a line. A weak laser field resonantly excites only one of the atoms in the line. Two interaction mechanisms, namely, the vacuum-induced dipole–dipole interaction and the collective spontaneous emission couple the system of atoms. The aim is to observe the emission of a set of photon twins synchronized in time. It is seen that strongly directional emission of pairs of photons can take place due to the interference between the emitters. These highly correlated pairs of photons can be observed in very precise geometric directions. The observation is made based on two different detection procedures. It is found that the superradiant photons always tend to be bunched along the same direction.
We study dynamics of local quantum uncertainty (LQU) for a system of two cavities and two reservoirs. In the start, the cavities are treated as two qubits which are quantum correlated with each other, whereas reservoirs (also qubits) are neither correlated with each other nor with cavities. We answer two main questions in this work. First, how local quantum uncertainty decays from two quantum correlated cavities and grows among reservoirs. The second question is the examination of LQU developed among four qubits and also shed some light on its dynamics. We observe that LQU develops among reservoirs as kind of mirror image to its decay from cavities. For four qubits, we propose how to compute LQU such that the method is intuitive and analytically computable. We find that among four qubits, LQU starts growing from zero to some maximum value and then decays again to zero as the asymptotic state of cavities is completely transferred to reservoirs. We suggest the experimental setup to implement our results.
Modern lasers are unable yet to cause electron–positron pair production in vacuum, however it is possible to notice considerable influence of vacuum polarization on radiation that propagates in such medium. In our work we present nonlocal theory of interaction of intensive laser radiation with electron–positron vacuum. We refuse from Heisenberg–Euler approximation and it permits us to calculate nonzero response of vacuum even for a plane wave. We show how to use the "proper time" method for calculation of corrections to the Maxwell equations. These equations are solved for the case of plane wave and their solutions are investigated.
This work consists in a generalization of the developed method to measure the quantum state of the field in a cavity with all non null coefficients, in the number representation, through one photon interaction. We present a strategy to measure the quantum state of the field when it has all non-null coefficients or only even or odd coefficients through a two-photons atom-field interaction.
We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.
We have studied the effect of external pumping on the dynamics of the entanglement of two two-level atoms interacting with a cavity mode. It is shown that a sequence of well detuned pulses of the classical field leads to the dynamical formation of an extended plateau-like zone of high level atomic entanglement with the duration much longer than the period of Rabi oscillations. The dissipation reduces the amplitude of the entanglement, however practically does not change the width of such zones.
The Rabi regime for a Bose-Einstein condensate (BEC) in double-well potential occurring for sufficiently strong cross-collision strengths is analyzed. It is shown that in this regime the potential barrier acts as a temporal atomic beam splitter. An ideal 50:50 atomic beam splitter reached at specific intervals of time is employed for a balanced homodyne detection of the condensate relative phase.
The interaction of a two-level XYn-spin system with a two-mode cavity field is investigated through a generalized Jaynes-Cummings model in the rotating wave approximation. The spontaneous decay of a spin level was treated by considering the interaction of the two-level spin system with the modes of the universe in the vacuum state. The different cases of interest, characterized in terms of a detuning parameter for each mode, which emerge from the nonvanishing of certain commutation relations between interaction picture Hamiltonians associated with each mode, were analytically implemented and numerically discussed for various values of the initial mean photon number and spin-photon coupling constants. Photon distribution, time evolution of the spin population inversion, as well as the statistical properties of the field leading to the possible production of nonclassical states, such as antibunched light and violations of the Cauchy-Schwartz inequality are examined for an excited initial state. It was assumed that the two modes are initially in coherent states and have the same photon distribution. The case of zero detuning of both modes was treated in terms of a linearization of the expansion of the time evolution operator, while in other three cases, the computations were conducted via second- and third-order Dyson perturbation expansion of the time evolution operator matrix elements for the excited and ground states respectively.
Based on methods of quantum optics, we discuss the possibility of achieving the negative index of refraction in a semiconductor with donor-like impurities. The quantum states of hydrogen-like donor atom and states of an electron in conduction band constitute a discrete-level atomic medium within the optical range. The coherent coupling of an electric dipole transition with a magnetic dipole transition leads to permeability and permittivity responses and, within some frequency band, ensures the negative refractive index. The magnetic moment between two quasi-atomic states separated by optical frequencies is induced by a low-frequency electromagnetic field. The implementation of this scheme is carried out in tin-doped indium oxide, and the calculations show feasibility of the effect within a broad bandwidth ∼2% with a high figure of merit greater than 10 in the optical regime.
Cavity quantum optomechanics offers the potential to explore quantum nature and characteristics in microscopic and nanoquantum systems. In this area, various experimental setup trends to explore, while theoretical approaches seek to lead the concrete bases for these amazing characteristics. In this paper, we present the dynamic features, stabilization and the optical response (transmission) properties of an optomechanical system in the squeezed environment theoretically. Particularly, we calculate optical intensity transmission coefficient of the optomechanical system. The optomechanical system has driven coherently with the external laser field.
In this paper, we study the interaction of quantized radio-frequency (rf)/microwave-field with nuclear spin in Nuclear Magnetic Resonance (NMR) or electron spin in Electron Paramagnetic Resonance (EPR). In magnetic resonance experiments, interaction of quantized rf-field leads to entanglement of spin with the electromagnetic field. In an entangled state, the spins are depolarized with no net transverse magnetization, which cannot give a detectable signal in inductive detection (or Q detection) that detects transverse magnetization. We show that when the electromagnetic field is in coherent state, inductive detection becomes possible. We use the mathematics of quantum optics to study the evolution of a coherent rf-field with a sample of all polarized spins. We show that evolution can be solved in closed form as a separable state of rf-field and spin ensemble, where spin ensemble evolves according to Bloch equations in an rf-field. We extend the analysis and results to a spin ensemble with Boltzmann polarization. The rabi frequency and coupling strength of spins to rf-field depends on number state of the rf-field. We show that in interaction with a coherent rf-field, this variation in coupling strength introduces negligible error.
We investigate the interaction of two two-level atoms with a single mode cavity field. One of the atoms is exactly at resonance with the field, while the other is well far from resonance and hence is treated in the dispersive limit. We find that the presence of the non-resonant atom produces a shift in the Rabi frequency of the resonant atom, as if it was detuned from the field. We focus on the discussion of the evolution of the state purity of each atom.
We review some recent experiments based upon multimode two-photon interference of photon pairs created by spontaneous parametric down-conversion. The new element provided by these experiments is the inclusion of the transverse spatial profiles of the pump, signal and idler fields. We discuss multimode Hong–Ou–Mandel interference, and show that the transverse profile of the pump beam can be manipulated in order to control two-photon interference. We present the basic theory and experimental results as well as several applications to the field of quantum information.
We introduce new quantum states of light field, called the nonlinear even and odd displaced number states, by introducing the nonlinearity. The statistical properties investigated presents several interesting quantum effects.
In this paper, we review recent developments in the emerging field of electron quantum optics, stressing analogies and differences with the usual case of photon quantum optics. Electron quantum optics aims at preparing, manipulating and measuring coherent single electron excitations propagating in ballistic conductors such as the edge channels of a 2DEG in the integer quantum Hall regime. Because of the Fermi statistics and the presence of strong interactions, electron quantum optics exhibits new features compared to the usual case of photon quantum optics. In particular, it provides a natural playground to understand decoherence and relaxation effects in quantum transport.
We study theoretically the dynamics of entangled states created in a beam splitter with a nonlinear Kerr medium placed into one input arm. Entanglement dynamics of initial classical and nonclassical states are studied and compared. Signatures of revival and fractional revival phenomena exhibited during the time evolution of states in the Kerr medium are captured in the entangled states produced by the beam splitter. Dynamics of entanglement shows local minima at the instants of fractional revivals. These minima correspond to the generation of two-component Schrödinger cat states or multi-component Schrödinger cat-like states if the initial state considered is a coherent state. Maximum entanglement is obtained at the instants of collapses of wave packets in the medium. Our analysis shows increase in entanglement with increase in the degree of nonclassicality of the initial states considered. We show that the states generated at the output of the beam splitter using initial nonclassical states are more robust against decoherence due to photon absorption by an environment than those formed by an initial classical state.
Quantum wires occupy a unique status among the semiconducting nanostructures with reduced dimensionality, no other system seems to have engaged researchers with as many appealing features to pursue. This paper aims at a core issue related with the magnetoplasmon excitations in the quantum wires characterized by the confining harmonic potential and subjected to a longitudinal electric field and a perpendicular magnetic field in the symmetric gauge. Despite the substantive complexity, we obtain the exact analytical expressions for the eigenfunction and eigenenergy, using the scheme of ladder operators, which fundamentally characterize the quantal system. Crucial to this inquiry is an intersubband collective excitation that evolves into a magnetoroton — above a threshold value of magnetic field — which observes a negative group velocity between the maxon and the roton. The evidence of negative group velocity implies anomalous dispersion in a gain medium with the population inversion that forms the basis for the lasing action of lasers. Thus, the technological pathway that unfolds is the route to devices exploiting the magnetoroton features for designing the novel optical amplifiers at nanoscale and hence paving the way to a new generation of lasers.