Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Anticipating quantum stochastic integrals

    Based on the quantum white noise theory, we formulate new types of anticipating quantum stochastic integrals by combining the Hitsuda–Skorokhod quantum stochastic integrals and the interactions between the integrands and the integrators. For our purpose, we prove various versions of analytic characterization theorems of symbols of white noise operators as more general cases. Also, several types of quantum (stochastic) gradients are formulated as continuous linear operators which are related to the quantum white noise derivatives and reflecting the interactions with the external noises. Finally, we formulate further systematical study of anticipating quantum stochastic integrals.