Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Thermodynamics and quantum tunneling of Reissner–Nordström black holes with deficit solid angle and quintessence

    We study thermodynamics and quantum tunneling of the Reissner–Nordström black hole with deficit solid angle and quintessence. We employ black hole thermodynamical laws and Parikh–Wilczek’s semiclassical tunneling process to obtain expressions of some thermodynamics quantities, Boltzmann factor, and entropy variation of the black hole. Regarding black hole background as dynamical and using conservation laws for energy and charge, we detect the existence of unthermal radiation spectrum and dependence of Boltzmann factor on the background geometry, and on energy and charge of the radiant particle. We explicitly plot variations of temperature, heat capacity, Boltzmann factor, and entropy change for various values of deficit solid angle 𝜖 and quintessence density ρ0. When varying the black hole entropy, there exists a phase transition, which shifts to lower entropy for increasing ρ0 and decreasing 𝜖2. We show that temperature, heat capacity, and quantum tunneling rate are decreased in presence of quintessence and deficit angle parameters.