Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The Klein–Gordon equation in the presence of generalized Coulomb potential is solved and the quasi-exact solutions are obtained via the sl(2) algebraization. The condition of quasi-exact solvability is derived by matching the condition of invariant subspace on the problem. The Lie-algebraic approach of quasi-exact solvability is applied to the problem and the (n+1)×(n+1) matrix for finite values of n is obtained in quite a detailed manner and thereby the finite part of the spectrum is obtained.