Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This section updates Volume 4 of the Reviews of Accelerator Science and Technology titled “Accelerator Applications in Industry and the Environment,” published in 2011 [A. W. Chao and W. Chou (eds.), Reviews of Accelerator Science and Technology, Accelerator Applications in Industry and the Environment, Vol. 4 (World Scientific, 2011)]. We also include the new material available about this field following the publication of “The Beam Business: Accelerators in Industry” in 2011 [R. W. Hamm and M. E. Hamm, Physics Today 46–51 (June 2011)] and “Industrial Accelerators and Their Applications” in 2012 [R. W. Hamm and M. E. Hamm, Industrial Accelerators and Their Applications (World Scientific, 2012)], both written and co-edited by one of us (RWH). We start with some general trends in industrial accelerator developments and applications and then move on to bringing the up-to-date developments in each article of Volume 4. In this regard, we owe a debt of gratitude to many of the authors of sections of RAST-4, and they are gratefully acknowledged in each of their individual update submissions.
Since the 1970s, high energy heavy ion accelerators have been one of the leading options for imploding and igniting targets for inertial fusion energy production. Following the energy crisis of the early 1970s, a number of people in the international accelerator community enthusiastically began working on accelerators for this application. In the last decade, there has also been significant interest in using accelerators to study high energy density physics (HEDP). Nevertheless, research on heavy ion accelerators for fusion has proceeded slowly pending demonstration of target ignition using the National Ignition Facility (NIF), a laser-based facility at Lawrence Livermore National Laboratory. A recent report of the National Research Council recommends expansion of accelerator research in the US if and when the NIF achieves ignition.
Fusion target physics and the economics of commercial energy production place constraints on the design of accelerators for fusion applications. From a scientific standpoint, phase space and space charge considerations lead to the most stringent constraints. Meeting these constraints almost certainly requires the use of multiple beams of heavy ions with kinetic energies > 1 GeV. These constraints also favor the use of singly charged ions. This article discusses the constraints for both fusion and HEDP, and explains how they lead to the requirements on beam parameters.
RF and induction linacs are currently the leading contenders for fusion applications. We discuss the advantages and disadvantages of both options. We also discuss the principal issues that must yet be resolved.