Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper we study the geometry of simply connected two-step nilpotent Lie groups of dimension five. We give the Levi–Civita connection, curvature tensor, sectional and scalar curvatures of these spaces and show that they have constant negative scalar curvature. Also we show that the only space which admits left-invariant Randers metric of Berwald type has three-dimensional center. In this case the explicit formula for computing flag curvature is obtained and it is shown that flag curvature and sectional curvature have the same sign.
In this paper, we find a condition under which a Finsler space with Randers change of mth-root metric is projectively related to a mth-root metric and also we find a condition under which this Randers transformed mth-root Finsler metric is locally dually flat. Moreover, if transformed Finsler metric is conformal to the mth-root Finsler metric, then we prove that both of them reduce to Riemannian metrics.