Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    NEUTRINO MASS AND GRAND UNIFICATION OF FLAVOR

    The problem of understanding quark mass and mixing hierarchies has been an outstanding problem of particle physics for a long time. The discovery of neutrino masses in the past decade, exhibiting mixing and mass patterns so very different from the quark sector has added an extra dimension to this puzzle. This is specially difficult to understand within the framework of conventional grand unified theories which are supposed to unify the quarks and leptons at short distance scales. In the paper, I discuss a recent proposal by Dutta, Mimura and this author that appears to provide a promising way to resolve this puzzle. After stating the ansatz, we show how it can be realized within a SO(10) grand unification framework. Just as Gell-Mann's suggestion of SU(3) symmetry as a way to understand the hadronic flavor puzzle of the sixties led to the foundation of modern particle physics, one could hope that a satisfactory resolution of the current quark-lepton flavor problem would provide fundamental insight into the nature of physics beyond the standard model.