Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Item−item collaborative filtering is a sub-type of a recommender system that applies the items’ similarities for recommending a new set of items to the user. Usually, a traditional recommender system utilizes items’ ratings given by the user for deducing their preferences for recommending items. However, for the popularity of social platforms, users are now more familiar to write textual comments known as reviews about items based on their experiences rather than giving a rating, because rating any item limits a user to manifest the degree of satisfaction towards the item. As a result, the items’ reviews become a precious source of information that could enhance the system’s performance. In this paper, a novel recommendation approach has been proposed by applying a recurrent neural network to incorporate items’ reviews with the recommender system. The recurrent neural network is a deep learning-based approach that can distribute the text to the relevant classes. Thus, the proposed approach has applied long short-term memory which is a modern formation of recurrent neural network that is applied to compute items’ rating scores from the items’ reviews. Then, the score is used to define the uniformity of items by using the Jaccard and Pearson correlation coefficient. The proposed approach has been evaluated by two familiar datasets named Yelp & Amazon datasets. Also, it is found that the proposed approach surpasses the traditional techniques and also improved the accuracy of prediction for the Yelp dataset by approximately in respect of 1.37% mean absolute error, 2.17% precision, 2.08% recall, and 2.11% f-measure. Furthermore, the proposed approach increased the recommendation performance for Amazon dataset on average in term of 1.34% mean absolute error, 2.09% precision, 2.53% recall, and 2.32% f-measure, respectively.
Recommender systems nowadays are playing an important role in the delivery of services and information to users. Sentiment analysis (also known as opinion mining) is the process of determining the attitude of textual opinions, whether they are positive, negative or neutral. Data sparsity is representing a big issue for recommender systems because of the insufficiency of user rating or absence of data about users or items. This research proposed a hybrid approach combining sentiment analysis and recommender systems to tackle the problem of data sparsity problems by predicting the rating of products from users’ reviews using text mining and NLP techniques. This research focuses especially on Arabic reviews, where the model is evaluated using Opinion Corpus for Arabic (OCA) dataset. Our system was efficient, and it showed a good accuracy of nearly 85% in predicting the rating from reviews.
This paper proposes the architecture of an agent-based hybrid recommender system consists of three subsystems: content-based, collaborate filtering and rating prediction. They are controlled by a task agent, who self-determines when to execute the hybrid recommendation algorithm based on user’s implicit feedback and its knowledge base. In content-based subsystem, an improved implicit feedback algorithm is presented. Moreover, an improved inter-user similarity function is applied to find out like-minded neighbors in collaborate filtering subsystem. To enhance the quality, result sets of content-based and collaborate filtering recommendations are reunited to select the top 5 items through our rating prediction algorithm based on linear regression model. Afterwards, a client agent sends back recommendations and receives another user’s request. Experimental data show that hybrid techniques hold the promise of produce high-quality recommendations with the assistance of agents.