Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    THE POLE DIAGRAM AND THE MIYAZAWA POLYNOMIAL

    We introduce the pole diagram, which helps to retrieve information from a knot diagram when we smooth crossings. By using the notion, we define a bracket polynomial for the Miyazawa polynomial. The bracket polynomial gives a simple definition and evaluation for the Miyazawa polynomial. Then we show that the virtual crossing number of a virtualized alternating link is determined by its diagram. Furthermore, we construct infinitely many virtual link diagrams which attain the minimal real and virtual crossing numbers together.