Matrix grammars are one of the classical topics of formal languages, more specifically, regulated rewriting. Although this type of control on the work of context-free grammars is one of the earliest, matrix grammars still raise interesting questions (not to speak about old open problems in this area). One such class of problems concerns the leftmost derivation (in grammars without appearance checking). The main point of this paper is the systematic study of all possibilities of defining leftmost derivation in matrix grammars. Twelve types of such a restriction are defined, only four of which being discussed in literature. For seven of them, we find a proof of a characterization of recursively enumerable languages (by matrix grammars with arbitrary context-free rules but without appearance checking). Other three cases characterize the recursively enumerable languages modulo a morphism and an intersection with a regular language. In this way, we solve nearly all problems listed as open on page 67 of the monograph [7], which can be seen as the main contribution of this paper.
Moreover, we find a characterization of the recursively enumerable languages for matrix grammars with the leftmost restriction defined on classes of a given partition of the nonterminal alphabet.