Please login to be able to save your searches and receive alerts for new content matching your search criteria.
J. S. Carter, S. Kamada and M. Saito showed that there is one to one correspondence between the virtual Reidemeister equivalence classes of virtual link diagrams and the stable equivalence classes of link diagrams on compact oriented surfaces. Using the result, we show how to obtain the supporting genus of a projected virtual link by a geometric method. From this result, we show that a certain virtual knot which cannot be judged to be non-trivial by known algebraic invariants is non-trivial, and we suggest to classify the equivalence classes of projected virtual links by using the supporting genus.
Any flat virtual link has a reduced diagram which satisfies a certain minimality, and reduced diagrams are related one another by a finite sequence of a certain Reidemeister move. The move preserves some numerical invariants of diagrams. So we can define numerical invariants for flat virtual links. One of them, the crossing number of a flat virtual knot K, coinsides with the self-intersection number of K as an essential geodesic loop on a hyperbolic closed surface. We also show an equation among these numerical invariants, basic properties by using the equation, and determine non-split flat virtual links with the crossing number up to three.