Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SIMPLE AND COST EFFECTIVE FABRICATION OF ZnO THIN FILMS ON HYDROGEN TERMINATED SILICON SUBSTRATES BY NEBULISED SPRAY PYROLYSIS

    Pure and Al doped nanocrystalline ZnO films have been prepared on Hydrogen terminated Si(100) substrates by nebulized spray pyrolysis. The dependence of the structural, compositional and electrical properties were investigated using XRD, EDX, AFM and spectrophotometer. The X-ray diffraction data coincide well with the pattern of ZnO reported with the Standard Database. Films annealed at higher temperatures show better orientation, as revealed from X-ray diffraction patterns. Annealing the films in air improved the electrical properties. From the I-V characteristics, the nonlinear coefficient α value has been estimated. Reflectance measurements show good reflectance in the IR region for pure ZnO films, and Al doping improved the reflectance values.

  • articleNo Access

    A HYBRID MODEL FOR QUANTUM WELL SOLAR CELLS

    Quantum and classical components are blended together in this proposed theoretical model for describing multiple quantum well solar cells (MQWSC) in a p-i-n architecture. The model characteristics are: the use of transfer matrix as a quantum method for finding allowed energies in the coupled quantum wells, the connection of the absorption coefficient in the confined 2D structure to the one in the bulk semiconductor, and the treatment of the whole cell as a pseudo-homogeneous media to determine its reflectance. The resulted model is intended to be a working tool to assess electro-optical properties of MQWSC. Numerical results which relate the performance of the MQWSC to its structure are reported.