Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we establish some weighted Hardy and Rellich inequalities and discuss its best constants on the Heisenberg group. Moreover, we also present a class of higher-order weighted Hardy–Rellich inequalities with the remainder term.
We use variational methods to study the existence of non-trivial and radially symmetric solutions to the Hénon–Lane–Emden system with weights, when the exponents involved lie on the "critical hyperbola". We also discuss qualitative properties of solutions and non-existence results.
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain the sharp constants of Hardy and Rellich inequalities related to the geodesic distance on M. Furthermore, if M is with strictly negative curvature, we show that the Lp Hardy inequalities can be globally refined by adding remainder terms like the Brezis–Vázquez improvement in case p ≥ 2, which is contrary to the case of Euclidean spaces.
In this paper, we are dealing with quantitative Rellich inequalities on Finsler–Hadamard manifolds where the remainder terms are expressed by means of the flag curvature. By exploring various arguments from Finsler geometry and PDEs on manifolds, we show that more weighty curvature implies more powerful improvements in Rellich inequalities. The sharpness of the involved constants is also studied. Our results complement those of Yang, Su and Kong [Hardy inequalities on Riemannian manifolds with negative curvature, Commun. Contemp. Math.16 (2014), Article ID: 1350043, 24 pp.].