Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Distinct Patterns of Functional Connectivity During the Comprehension of Natural, Narrative Speech

    Recent continuous task studies, such as narrative speech comprehension, show that fluctuations in brain functional connectivity (FC) are altered and enhanced compared to the resting state. Here, we characterized the fluctuations in FC during comprehension of speech and time-reversed speech conditions. The correlations of Hilbert envelope of source-level EEG data were used to quantify FC between spatially separate brain regions. A symmetric multivariate leakage correction was applied to address the signal leakage issue before calculating FC. The dynamic FC was estimated based on a sliding time window. Then, principal component analysis (PCA) was performed on individually concatenated and temporally concatenated FC matrices to identify FC patterns. We observed that the mode of FC induced by speech comprehension can be characterized with a single principal component. The condition-specific FC demonstrated decreased correlations between frontal and parietal brain regions and increased correlations between frontal and temporal brain regions. The fluctuations of the condition-specific FC characterized by a shorter time demonstrated that dynamic FC also exhibited condition specificity over time. The FC is dynamically reorganized and FC dynamic pattern varies along a single mode of variation during speech comprehension. The proposed analysis framework seems valuable for studying the reorganization of brain networks during continuous task experiments.