Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Absorption spectroscopy of quantum black holes with gravitational waves

    The observation of electromagnetic radiation emitted or absorbed by matter was instrumental in revealing the quantum properties of atoms and molecules in the early XX century, and constituted a turning-point in the development of the quantum theory. Quantum mechanics changes dramatically the way radiation and matter interact, making the probability of emission and absorption of light strongly frequency dependent, as clearly manifested in atomic spectra. In this essay, we advocate that gravitational radiation can play, for the quantum aspects of black holes, a similar role as electromagnetic radiation did for atoms, and that the advent of gravitational-wave astronomy can bring this fascinating possibility to the realm of observations.