Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    An Empirical Study of Factors Influencing the Intention to Use Robo-Advisors

    Artificial intelligence-based investment services (robo-advisors) are becoming increasingly commercialized. Robo-advisors are expected to expand further due to the enhancement of accessibility to investment for general investors through customized portfolio selection and automated transactions established upon the artificial intelligence-based algorithm. This study comprehensively investigates factors that influence acceptance intention of and resistance to robo-advisors using a combined model of technology acceptance model and innovation resistance model. The model was examined through conducting a choice-based conjoint analysis of 158 users with investment experience and age ranging from 20s to 60s. The independent variables of the research for robo-advisors are transparency, customization, social presence, and user control. The effects of the independent variables on acceptance intention and innovation resistance are analyzed, respectively, through mediator variables of perceived usefulness, perceived complexity, and perceived safety. This study indicates the fundamental factors for the promotion of the domestic robo-advisor market based on the analysis of further advanced overseas robo-advisor markets. The significance of this study derives from providing implications on the direction of development for companies or financial institutions in the sphere of robo-advisors.

  • chapterNo Access

    Chapter 117: Big Data and Artificial Intelligence in the Banking Industry

    Big data and artificial intelligence (AI) assist businesses with decision-making. They help companies create new products and processes or improve existing ones. As the amount of data grows exponentially and data storage and computing power costs drop, AI is predicted to have great potentials for banks. This chapter discusses the implications of big data and AI for the banking industry. First, we provide background on big data and AI. Second, we identify areas in which banks can benefit from big data and AI, and evaluate their applications for the banking industry. Third, we discuss the implications of big data and AI for regulatory compliance and supervision. Last, we conclude with the limitations and challenges facing the use of big-data based AI.