Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The growth of biological systems like DNA, peptides and proteins are accredited to the self-assembly processes from the molecular level to the nanoscale. The flawless immobilization of DNA on any surface is quite an important step to the development of DNA-based biosensors. The present paper reports the use of atomic force microscopy to determine the mechanical properties of the as grown and annealed self-assembled monolayer (SAM) as well as the mutated DNA immobilized on the SAM. The SAM of alkane thiol (16-mercapto-1-hexadecanol) was developed on Au surface, which was then annealed and analyzed for its structural and mechanical properties. The surface coverage, height and monolayer’s order was studied as a function of incubation time and annealing time. Excessive annealing led to the defragmentation and desorption of SAM structures due to breaking of hydrocarbon bonds. AFM was employed to determine the detach separation, pull-off and work of adhesion of the as grown and annealed SAM.