Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Forward-backward stochastic differential equation (FBSDE) systems were introduced as a probabilistic description for parabolic type partial differential equations. Although the probabilistic behavior of the FBSDE system makes it a natural mathematical model in many applications, the stochastic integrals contained in the system generate uncertainties in the solutions which makes the solution estimation a challenging task. In this paper, we assume that we could receive partial noisy observations on the solutions and introduce an optimal filtering method to make a data informed solution estimation for FBSDEs.