In this paper, we present a comparative study of structural and optical properties of polycrystalline p-type 6H-SiC and thin SiC layer growth onto Si. The thin SiC layer was grown on a p-type Si(100) substrate by pulsed laser deposition (PLD) using KrF excimer laser from a 6H-SiC hot pressed target. The properties of polycrystalline 6H-SiC and thin SiC layer were investigated by scanning electronic microscopy (SEM), high resolution X-Ray Diffraction (XRD), secondary ion mass spectrometry (SIMS), FT-IR spectroscopy and photoluminescence spectrometry. XRD analysis showed that the two materials have the same hexagonal structure (6H-SiC) as identified by ASTM 72-0018. In addition, a SIMS analysis gives a ratio Si/C of the thin SiC layer around 1.15 but the ratio Si/C of the target was found equal to 1.06, whereas one should have 1.0. This is due to the higher ionization efficiency of Si by the report of C atoms and in photoluminescence, the two materials exhibit the same emission bands (blue and green). Finally, a crystalline thin SiC layer of 1.6 μm was elaborated using the PLD method at low-temperature indicating that the technique reproduces the same macroscopic property (optical, structural, mechanical, etc.) of the target.